
Segmentation as clustering

• Cluster together (pixels, tokens, etc.) that belong together
• We assume that we can compute how close tokens are, or how close a

token is to cluster.

Clustering and dimensionality

• A simple clustering method that does not make sense in high dimensions
– Partition space into hypercubes of edge size 1/K
– Put points into the appropriate cube
– Most cubes do not get used (there are too many of them!)

• Real data lives in low dimensional manifolds (plus noise perturbations)
– Most of a high dimensional space is not used

• A distance function takes two high dimensional points and maps them into a
single number, which looses a lot of information about the points.

• Non-intuitive fact --- points in a cluster tend to be about the same distance away
from the center
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K-means clustering using intensity alone and color alone
(Assuming 5 segments, i.e. k=5)

Image Clusters on intensity Clusters on color

K-means using color alone, 11 segments

Image Clusters on color

K-means using
color alone,
11 segments.

Notes on K-Means

• K-means is “hard” clustering-each point is completely in exactly one cluster

• What you get is a function of starting “guess”

• The error goes down with every iteration
– This means you get a local minimum

• Unfortunately, the dimension of the space is usually large, and high-
dimensional space have lots of local maximum (standard problem!)
– Dimensionality here is K*dim(x)

• Finding the global minimum for a real problem is very optimistic!

you should be able to
argue why this is true



Graph theoretic clustering

• Represent distance between tokens using a weighted graph.
– affinity matrix

• Cut up this graph to get subgraphs with strong interior links (and
weak links between the subgraphs).

Image representation
of weight matrix

Graph for 9
tokens

(Note that the point ordering is conveniently chosen)

Measuring Affinity
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Eigenvectors and cuts
• For some cluster, consider a vector a giving the association between

each element and that cluster

• We want elements within this cluster to, on the whole, have strong
affinity with one another

• If two elements, i and j, are part of the same cluster,  then
– ai and aj are both large
– and the affinity Aij is large
– thus, ai Aij aj should be large

• Thus a good cluster is one where is large.ai
j

!
i

! Aijaj

Eigenvectors and cuts

•

• This suggests maximizing

• But we need the constraint

– Arguably it might be more logical to make the sum of the
elements of a to be one, but the standard (L2) norm is easier to
deal with.

ai
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! Aijaj    should be large for a coherent cluster represented by a.
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Eigenvectors and cuts

• We want to maximize                 subject to

• This is an eigenvalue problem - choose the eigenvector of A with
largest eigenvalue

• This gives the cluster with greatest internal affinity
– Ideally, most elements of the eigenvalue are near zero, and the

others tell us which tokens are in the cluster
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Example eigenvector

points

affinity matrix

(you should know how to interpret these)

best eigenvector

(Note that the point ordering is conveniently chosen)


