

Segmentation as clustering

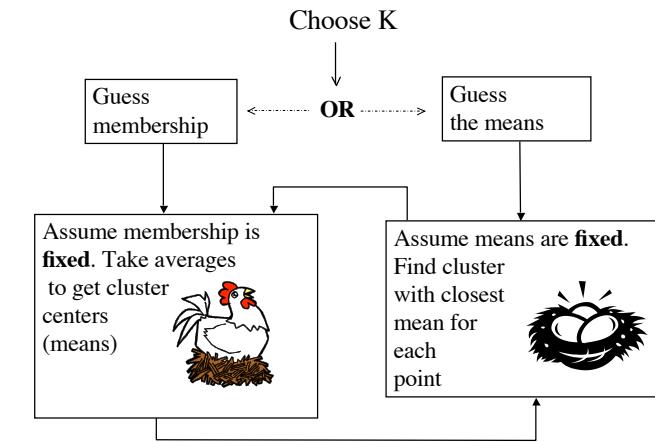
- Cluster together (pixels, tokens, etc.) that belong together
- We assume that we can compute how close tokens are, or how close a token is to a cluster.

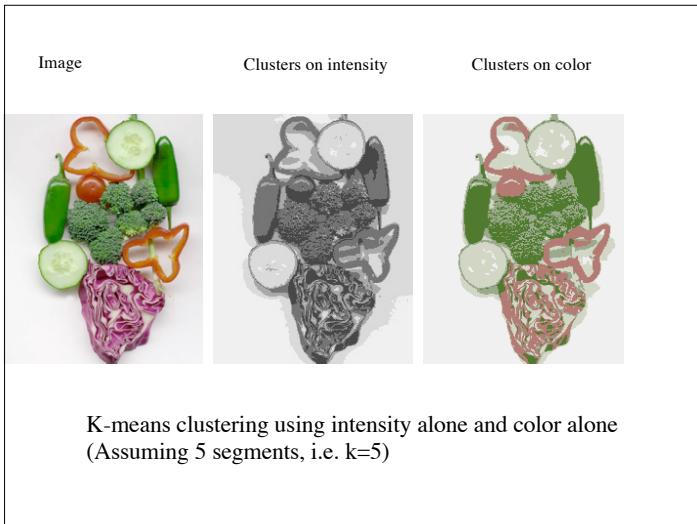
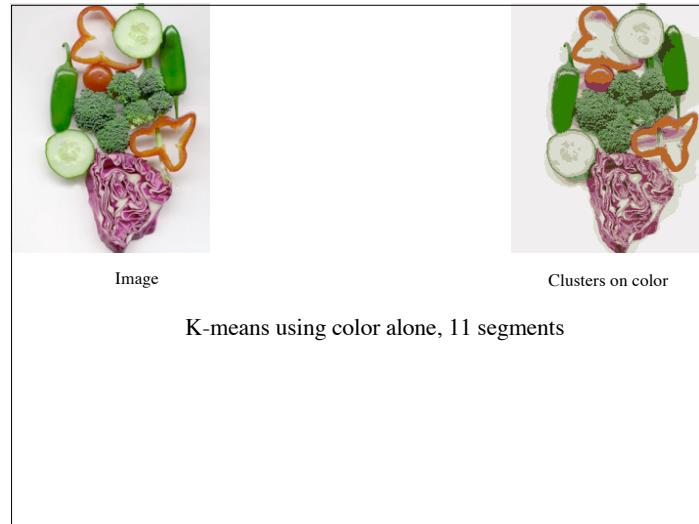
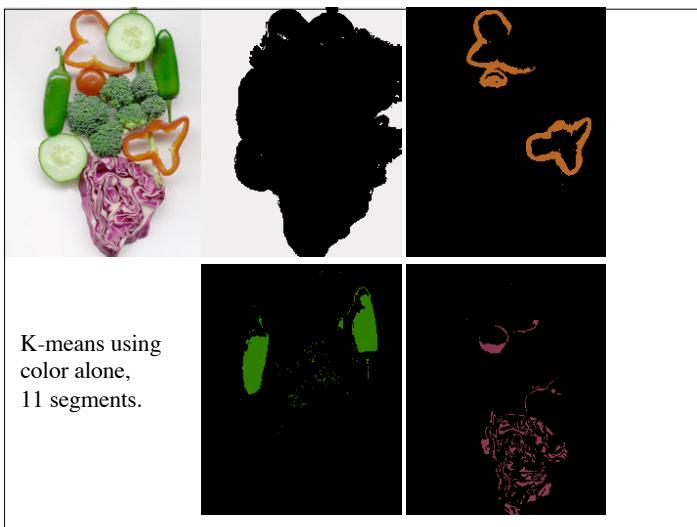
Clustering and dimensionality

- A simple clustering method that does not make sense in high dimensions
 - Partition space into hypercubes of edge size $1/K$
 - Put points into the appropriate cube
 - Most cubes do not get used (there are too many of them!)
- Real data lives in low dimensional manifolds (plus noise perturbations)
 - Most of a high dimensional space is not used
- A distance function takes two high dimensional points and maps them into a single number, which loses a lot of information about the points.
- Non-intuitive fact --- points in a cluster tend to be about the same distance away from the center

K-Means (continued)

K-means flow chart





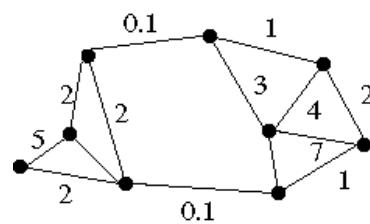
Notes on K-Means

- K-means is “hard” clustering-each point is completely in exactly one cluster
- What you get is a function of starting “guess”
- The error goes down with every iteration
 - This means you get a local minimum
- Unfortunately, the dimension of the space is usually large, and high-dimensional space have lots of local maximum (standard problem!)
 - Dimensionality here is $K \cdot \text{dim}(\mathbf{x})$
- Finding the global minimum for a real problem is very optimistic!

you should be able to
argue why this is true

Graph theoretic clustering

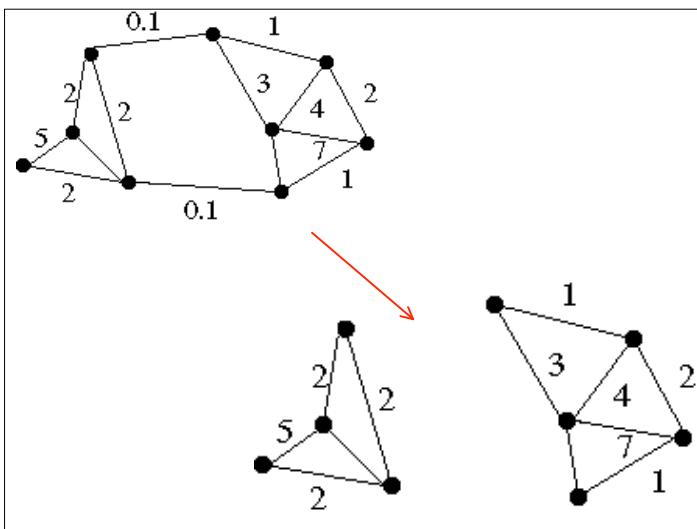
- Represent distance between tokens using a weighted graph.
 - affinity matrix
- Cut up this graph to get subgraphs with strong interior links (and weak links between the subgraphs).



Graph for 9 tokens

Image representation of weight matrix

(Note that the point ordering is conveniently chosen)



Measuring Affinity

Intensity

$$aff(x, y) = \exp \left\{ - \left(\frac{1}{2\sigma_i^2} \right) \|I(x) - I(y)\|^2 \right\}$$

Distance

$$aff(x, y) = \exp \left\{ - \left(\frac{1}{2\sigma_d^2} \right) (\|x - y\|^2) \right\}$$

Texture

$$aff(x, y) = \exp \left\{ - \left(\frac{1}{2\sigma_i^2} \right) \left(\|c(x) - c(y)\|^2 \right) \right\}$$

Texture Descriptor

Eigenvectors and cuts

- For some cluster, consider a vector \mathbf{a} giving the association between each element and that cluster
- We want elements within this cluster to, on the whole, have strong affinity with one another
- If two elements, i and j , are part of the same cluster, then
 - \mathbf{a}_i and \mathbf{a}_j are both large
 - and the affinity A_{ij} is large
 - thus, $\mathbf{a}_i^T A_{ij} \mathbf{a}_j$ should be large
- Thus a good cluster is one where $\sum_i \sum_j a_i A_{ij} a_j$ is large.

Eigenvectors and cuts

- $\sum_i \sum_j a_i A_{ij} a_j$ should be large for a coherent cluster represented by \mathbf{a} .
- This suggests maximizing $\mathbf{a}^T A \mathbf{a}$
- But we need the constraint $\mathbf{a}^T \mathbf{a} = 1$ (why?)
 - Arguably it might be more logical to make the sum of the elements of \mathbf{a} to be one, but the standard (L_2) norm is easier to deal with.

Eigenvectors and cuts

- We want to maximize $\mathbf{a}^T A \mathbf{a}$ subject to $\mathbf{a}^T \mathbf{a} = 1$
- This is an eigenvalue problem - choose the eigenvector of A with largest eigenvalue
- This gives the cluster with greatest internal affinity
 - Ideally, most elements of the eigenvalue are near zero, and the others tell us which tokens are in the cluster

Example eigenvector

