
Normalized cuts

• Previous criterion evaluates within cluster similarity, but does not
promote large differences between clusters.

• N-cuts proposes maximizing the within cluster similarity compared to
the across cluster difference

• Write graph nodes as V, part is cluster A, and the other is B.

• We have edges within A, B, and across A and B.

Normalized cuts

• N-cuts proposes maximizing the within cluster similarity compared
to the across cluster difference.

• Define cut(A,B) to be the sum of the weights of the edges that you
remove to split up the image.

• Define assoc(A,V) to be the sum of all the weights between elements
in A and elements in V.

Normalized cuts
• Two equivalent formulations

• Minimize

• Maximize

cut(A,B)

assoc(A,V)

!
"#

$
%&
+

cut(A,B)

assoc(B,V)

!
"#

$
%&

assoc(A,A)

assoc(A,V)

!
"#

$
%&
+

assoc(B,B)

assoc(B,V)

!
"#

$
%&

Normalized cuts
• Let y be a vector whose elements are (ideally) 1 if the element is in A, and -b if

it’s in B.
– b is theoretically defined for the derivation, but y is going to be estimated.

• Write the matrix of the graph as W, and the matrix which has the row sums of W
on its diagonal as D. Let 1 be a vector with all ones.

• With some algebra, the criterion becomes

• And we have a constraint

• This is hard to do, because y’s values are quantized

�

miny
yT D !W()y

y
T
Dy

"

$

%

&
'

�

y
T
D1 = 0

Optional

Normalized cuts

• Instead, solve the generalized eigenvalue problem

• which gives

• Now look for a quantization threshold that maximizes the criterion --- i.e
all components of y above that threshold go to one, all below go to -b

�

maxy y
T
D !W()y() subject to y

T
Dy = 1()

�

D !W()y = "Dy

Optional

Figure from “Image and video segmentation: the normalised cut framework”,
by Shi and Malik, copyright IEEE, 1998

Grouping by Fitting to a Model
• Work with a parametric representation for “objects”

– (e.g “line”, “ellipse”).

• Most interesting case is when criterion is not local
– can’t tell whether a set of points lies on a line by looking only at

each point and the next

• Three main questions:
– what object represents a given set of tokens best?
– which of several objects gets which token? (correspondence!)
– how many objects are there?

Example: Hough Transform for lines

• A line is the set of points (x, y) such that

• Different choices of θ, d>0 give different lines

• For any (x, y) there is a family of lines through this point, given by

• The choice of θ fixes d. The family of lines has one parameter.

�

sin!()x + cos!()y + d = 0

�

sin!()x + cos!()y + d = 0

�

sin!()x + cos!()y + d = 0

Data space

y

x

Parameter space

d

�

!

(Note: Curve is not accurate)

Lines map to point

Example: Hough Transform for lines

• Main idea: Each observed (x,y) votes for all (θ, d) satisfying

• Discretize the parameter space (θ, d) by an array

• Now each (x,y) leads to a bunch of votes (counts) in a (θ, d) grid (along the
curve in the preceding slide).

• To find lines, let all edge points (x,y) vote, and look for (θ, d) cells with
lots of votes.

�

sin!()x + cos!()y + d = 0

tokens votes tokens votes

tokens votes

