

Normalized cuts

- Previous criterion evaluates **within** cluster similarity, but does not promote large differences **between** clusters.
- N-cuts proposes maximizing the within cluster similarity **compared** to the across cluster difference
- Write graph nodes as V , part is cluster A , and the other is B .
- We have edges within A , B , and across A and B .

Normalized cuts

- N-cuts proposes maximizing the within cluster similarity **compared** to the across cluster difference.
- Define $\text{cut}(A,B)$ to be the sum of the weights of the edges that you remove to split up the image.
- Define $\text{assoc}(A,V)$ to be the sum of all the weights between elements in A and elements in V .

Normalized cuts

- Two equivalent formulations
- Minimize
$$\left(\frac{\text{cut}(A,B)}{\text{assoc}(A,V)} \right) + \left(\frac{\text{cut}(A,B)}{\text{assoc}(B,V)} \right)$$
- Maximize
$$\left(\frac{\text{assoc}(A,A)}{\text{assoc}(A,V)} \right) + \left(\frac{\text{assoc}(B,B)}{\text{assoc}(B,V)} \right)$$

Normalized cuts

Optional

- Let y be a vector whose elements are (ideally) 1 if the element is in A , and -1 if it's in B .
 - b is theoretically defined for the derivation, but y is going to be estimated.
- Write the matrix of the graph as W , and the matrix which has the row sums of W on its diagonal as D . Let $\mathbf{1}$ be a vector with all ones.
- With some algebra, the criterion becomes $\min_y \left(\frac{y^T(D-W)y}{y^T D y} \right)$
- And we have a constraint $y^T D \mathbf{1} = 0$
- This is hard to do, because y 's values are quantized

Normalized cuts

Optional

- Instead, solve the generalized eigenvalue problem

$$\max_y (y^T (D - W) y) \text{ subject to } (y^T D y = 1)$$

- which gives

$$(D - W)y = \lambda Dy$$

- Now look for a quantization threshold that maximizes the criterion --- i.e. all components of y above that threshold go to one, all below go to -b

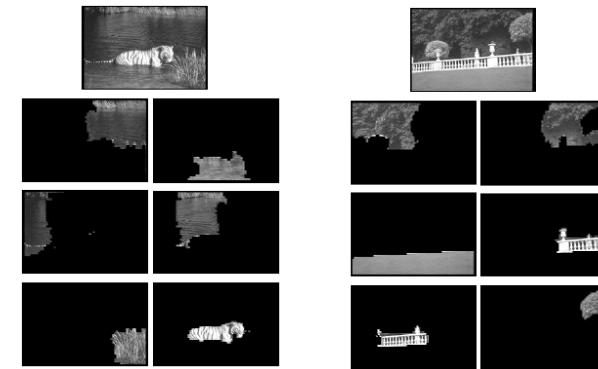


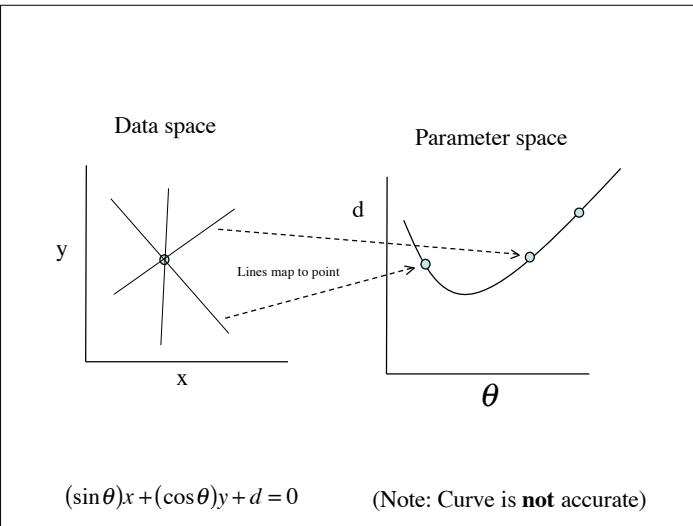
Figure from "Image and video segmentation: the normalised cut framework", by Shi and Malik, copyright IEEE, 1998

Grouping by Fitting to a Model

- Work with a parametric representation for "objects"
 - (e.g "line", "ellipse").
- Most interesting case is when criterion is not local
 - can't tell whether a set of points lies on a line by looking only at each point and the next
- Three main questions:
 - what object represents a given set of tokens best?
 - which of several objects gets which token? (**correspondence!**)
 - how many objects are there?

Example: Hough Transform for lines

- A line is the set of points (x, y) such that
$$(\sin \theta)x + (\cos \theta)y + d = 0$$
- Different choices of $\theta, d > 0$ give different lines
- For any (x, y) there is a family of lines through this point, given by
$$(\sin \theta)x + (\cos \theta)y + d = 0$$
- The choice of θ fixes d . The family of lines has **one** parameter.



Example: Hough Transform for lines

- Main idea: Each observed (x,y) votes for all (θ, d) satisfying $(\sin\theta)x + (\cos\theta)y + d = 0$
- Discretize the parameter space (θ, d) by an array
- Now each (x,y) leads to a bunch of votes (counts) in a (θ, d) grid (along the curve in the preceding slide).
- To find lines, let all edge points (x,y) vote, and look for (θ, d) cells with lots of votes.

