Probability Concepts

* We will make use of the following concepts.
— Basic probability in discrete spaces, events
— Joint probability
— Conditional probability
— Independence (and conditional independence)
— Marginal probability (marginalization)
— Probability in continuous spaces (probability density functions)

* To learn/review them see supplementary chapter in the
book posted on the web site or you favorite web text or
video resource

Probabilistic Fitting

* Generative probabilistic model
— Tells a story about how stochastic data comes to be
— Darts fall around the center of the board, but where exactly?
— Consider a model with parameters, 8
— Consider an observation, x;
— We denote the probability of seeing x; under the model by:

p(x, 19)
1\— Read “given” or “conditioned on”
Restricts to the case of ©
s _PA.B)
Defined by P(AIB)= 7B

Probabilistic Fitting

* Multiple observations
— Suppose we have multiple observations, in a vector x
— What is the probability of x?
» If observations are independent then probability is the
product of the individual observations
— Essentially a definition, but it is consistent with intuition

— The observations are conditionally independent given the model

* So, the probability of x is then:

px10)=[]r(x,10)

Probabilistic Fitting

* So, given the model, we have the probability of observing

the data

px10)=]]p(x 10)

* But what we really want is the probability of the model

(parameters) given the data!

* Bayes rule comes to the rescue!




likelihood function

for the parameters prior probability (often
taken to be uniform)

~ /

oy - PEIOP©)

posterior probability normalizer, often is
not of interest

Common special case

POIx)< P(x10)

Know the words in red

Bayes Rule

) _ P(BIA)P(A)
* Bayes rule: P(AlB)_iP(B)
« Proof P(A,B)= P(B| AYP(A)= P(A| B)P(B)

|
 With our notation: POIx)= w
(x)
Probabilistic Fitting

 If we assume uniform prior, then we can find the posterior
density for the parameters by:

PO %) o< p(x1©)

* Now the objective is to find the parameters © such that this
likelihood is maximum

* Note--this is the same as finding the parameters which
minimize the negative log likelihood

Probabilistic fitting with independence and uniform prior

Finding the “best” model under simple circumslances‘

maxébmize p(©1x) (one definition of best ®)

maxébmize p(x10) (by Bayes rule, uniform prior)
minid)mize —log(p(x10®)) (log is monotonic increasing)

minimize — log(H p(x, IG))) (by independence)

miniql)nize - ZIOg( p(x;19)) (high school math)




* Back to lines: ax+by+c=0 where a’2+b"2=1
* Distance squared from (x,y) to this line is (ax+by+c)A2

d }-, d= ‘dz — ‘
%, @b = ‘(a,b)-x - (a,b)’xo‘
\fd; = ‘(a,b)-x+ c‘
A = ‘ax +by+ c‘

unit circle

distance of line
to origin is lcl

* Generative model for lines: Choose point on line, and
then, with probability proportional to p(d), normally
distributed (Gaussian), go a distance d from the line.

* Now the probability of an observed (x.y) is given by

(ax+by+c)

p((x,)10) o< exp(— Py )
o

Lines

Convenient formula for line
ax+by+c=0
where a’2+b72=1

This is the generative model
It tells us P(data | model)

d* =(ax,+by, +c)2

/

(ax, +by, +c)’

P((xp5y,)1©) o< exp(— Py )
o

We have the probability density of the observed (x,y) given by

(ax+by+c)?
P((x,)1©) o exp(—~ 2T
20

The negative log is

(ax+by+c)?
207
And the negative log likelihood of multiple observations is

1 2
— 2 (ax, +by, +c
20“2( Y; +¢)

i




From the previous slide, we had that the negative log
likelihood of multiple observations is given by

21 2 2(axi+byi+€)2 (where a’> +b? =1)
g i

This should be recognizable as homogeneous least squares

Thus we have shown that least squares is maximum likelihood
estimation under normality (Gaussian) error statistics!

Line fitting by
minimizing error ==
maximum likelihood
estimation

Fitting curves other than lines

* In principle, an easy generalization
— For Gaussian error statistics, Euclidean distance is a good measure
— The probability of obtaining a point, given a curve, is given by a
negative exponential of distance squared
¢ In practice, this can be hard
— It can be difficult to compute the distance between a point and a curve
— Circles, ellipses, and a few others are not too hard
— Otherwise, craft an approximation
— §15.3 has more




