
Probability Concepts

• We will make use of the following concepts.
– Basic probability in discrete spaces, events
– Joint probability
– Conditional probability
– Independence (and conditional independence)
– Marginal probability (marginalization)
– Probability in continuous spaces (probability density functions)

• To learn/review them see supplementary chapter in the
book posted on the web site or you favorite web text or
video resource

Probabilistic Fitting

• Generative probabilistic model
– Tells a story about how stochastic data comes to be
– Darts fall around the center of the board, but where exactly?
– Consider a model with parameters, θ
– Consider an observation, xi

– We denote the probability of seeing xi  under the model by:

p(x
i
|!)

Read “given” or “conditioned on”
Restricts to the case of θ

Defined by

� 

P(A | B) =
P(A,B)

P(B)

Probabilistic Fitting

• Multiple observations
– Suppose we have multiple observations, in a vector x
– What is the probability of x?

• If observations are independent then probability is the
product of the individual observations
– Essentially a definition, but it is consistent with intuition
– The observations are conditionally independent given the model

• So, the probability of x is then:

p(x |!) = p(x
i" |!)

Probabilistic Fitting

• So, given the model, we have the probability of observing
the data

• But what we really want is the probability of the model
(parameters) given the data!

• Bayes rule comes to the rescue!

p(x |!) = p(x
i" |!)



Bayes Rule

• Bayes rule:

• Proof

• With our notation:

� 

P(A | B) =
P(B | A)P(A)

P(B)

� 

P(! | x) =
P(x |!)P(!)

P(x)� 

P(A,B) = P(B | A)P(A) = P(A | B)P(B)

� 

P(! | x) =
P(x |!)P(!)

P(x)

prior probability (often
taken to be uniform)

normalizer, often is
not of interest

likelihood function
for the parameters

posterior probability

� 

P(! | x)" P(x |!)

Common special case

Know the words in red

Probabilistic Fitting

• If we assume uniform prior, then we can find the posterior
density for the parameters by:

• Now the objective is to find the parameters Θ such that this
likelihood is maximum

• Note--this is the same as finding the parameters which
minimize the negative log likelihood

p(! | x)" p(x |!)

maximize
!

 p(" | x)        (one definition of best ")

maximize
!

 p(x |")        (by Bayes rule, uniform prior)

minimize
!

   " log(p(x |#))     (log is monotonic increasing)

minimize
!

   " log p(x
i# |$)( )       (by independence)

minimize
!

   " log(p(xi |#))$        (high school math)

Probabilistic fitting with independence and uniform prior

Finding the “best” model under simple circumstances



• Back to lines: ax+by+c=0 where a^2+b^2=1
• Distance squared from (x,y) to this line is (ax+by+c)^2

distance of line
to origin is |c|

|c| (a,b)

(a,b)

unit circle d2

d

d1

x0

x d = d
2
! d
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= (a,b)ix ! (a,b)ix
0

= (a,b)ix + c

= ax + by + c

• Generative model for lines: Choose point on line, and
then, with probability proportional to p(d), normally
distributed (Gaussian), go a distance d from the line.

• Now the probability of an observed (x,y) is given by

p((x, y) |!)" exp(#
(ax + by + c)2

2$ 2
)

p((xD , yD ) |!)" exp(#
(axD + byD + c)2

2$ 2
)

Lines

Convenient formula for line
ax+by+c=0
where  a^2+b^2=1

This is the generative model
It tells us P(data | model)

� 

d
2

= axD + byD + c( )
2

� 

xD , yD( )

We have the probability density of the observed (x,y) given by

The negative log is

And the negative log likelihood of multiple observations is

p((x, y) |!)" exp(#
(ax + by + c)2

2$ 2
)
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(ax + by + c)
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From the previous slide, we had that the negative log
likelihood of multiple observations is given by

This should be recognizable as homogeneous least squares

Thus we have shown that least squares is maximum likelihood
estimation under normality (Gaussian) error statistics!
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1

2!
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(axi + byi + c)
2

(where a
2

+ b
2

i

" = 1)

Line fitting by
minimizing error ==
maximum likelihood
estimation

Fitting curves other than lines

• In principle, an easy generalization
– For Gaussian error statistics, Euclidean distance is a good measure
– The probability of obtaining a point, given a curve, is given by a

negative exponential of distance squared
• In practice, this can be  hard

– It can be difficult to compute the distance between a point and a curve
– Circles, ellipses, and a few others are not too hard
– Otherwise, craft an approximation
– §15.3 has more


