
RANSAC

• Choose a minimally small subset (uniformly) at random
• Fit to that
• Anything that is close to result is signal; all  others are noise
• Refit
• Measure quality
• Do this many times and choose the best

RANSAC

• How big a subset?
– Smallest possible for the particular model (for a line, use 2 points)

• What does close mean?
– Depends on the problem
– Two strategies

• Points within some fit threshold
• Best k% points

• What is a good line?
– One where the number of nearby points is so big it is unlikely to be all

outliers (another threshold decision).

RANSAC

• How many iterations?
– Often enough that we are likely to have a good model

• Goes up with model complexity and belief about percentage of outliers

• Following notation from: http://en.wikipedia.org/wiki/RANSAC
– Let w be the probability of getting an inlier.
– Assume n points are needed for the model.
– Suppose you want to be sure of a valid fit with probability, p.
– Then the number of iterations, k, needed is:

k =
log 1! p( )

log 1!wn( )

Note use of
threshold



RANSAC and SIFT

• Powerful combination to find objects in images
• Exemplar image and image being studied typically have

different camera angle or position.
• Recall that:

– SIFT descriptors are relatively invariant to camera changes
– SIFT matching leads to lots of “false” matches

• The main idea is that true matches should “agree”
• For planar objects, the definition of “agree” is quite simple

Matching Slides to Presentation Videos

Keyframes

Slides

Keyframe Slide

local feature descriptors

location, scale, orientation and a feature vector with 128 elements

Only a quarter of keypoints shown!

SIFT (Scale Invariant Feature Transformation) keypoints review

Shown as a vector in the image

Nearest Neighbor search

Only a quarter of matches shown!

Nearest neighbor ratio has many outliers



Mappings of points on a plane in 3D satisfy a simple relation

frame keypoints slide keypoints

X’ = H X

Planar Homography
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Derivation of Planar Homography
Optional

Consider a point on a plane given by
X = X

o
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under the two projective transforms

P = A b[ ] and !P = !A !b[ ]

This leads to two image points, λp and λ’p’. 
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Optional

Derivation of Planar Homography

• This is a slightly
different derivation than
the draft notes.

• The draft notes have
extra transposes (i.e.,
XT) that are incorrect.

Notes for 2010

3x4 4x3

3x3

Optional

Derivation of Planar Homography
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Fit homography with

RANSAC

Only a quarter of matches shown!

Constraining matches by homography

Repeat many times

RANSAC approach

Randomly select enough matches to fit homography

Compute homography

Using that homography, measure error on best (say) 50%

Output best one found

Computing Homography

Seek H where 

H is only determined up to a scale factor (eight unknowns).
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Computing Homography

Each match then gives two linear equations

!x h
3

T
X = h

1

T
X     and    !y h

3

T
X = h

2

T
X

Hence four matches are OK.

This can be solved with homogenous least squares*, but this
is a bit unstable. A better way is the DLT (direct linear
transform) method.

* Doing this is part of the homework. You may want to review how we set up the
equations for camera calibration. Possibly helpful hint --- begin by noticing that
you can make X the row vector and the hx column vectors.



Direct Linear Transform Method
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  are parallel, so their cross product should be zero.
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so,       for example, the first component of the cross product gives
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Details optional

Direct Linear Transform Method

This leads to the following more stable set of equations.
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Details optional

Direct Linear Transform Method

For homogenous least squares.
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Details optional

Direct Linear Transform Method

The previous system has 3 equations per match, but only two of
them are independent (one could be omitted, but no need for
least squares methods, and hard to characterize the effect of
breaking the symmetry).

By adding rows for additional points, we get the DLT method.

Details optional



Segmentation/Grouping by EM

• A segment  could be modeled as a Gaussian process that emits feature
vectors (which could contain color; or color and position; or colour,
texture and position).

• Segment parameters are mean and (perhaps) variance or covariance,
and prior probability (was λ in the line fitting example).

• If we knew which segment each point belonged to, estimating these
parameters would be easy (this point should be familiar!)

• If we know the parameters, we can compute the probabilities that a
point belongs to each cluster (soft clustering).

• Here the model is a mixture of Gaussians (one for each cluster), and
the way to fit the model is Expectation Maximization (EM).

Guess model
parameters

Guess
correspondance OR

Assume model is fixed.
Find correspondance
probabilities (e.g.,
which point
is in which
cluster

Assume correspondence is
fixed. Update model
parameters
using max
likelihood

Design probability model
EM flow chart
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