Gaussian Mixture Model (GMM)

* Generative process
— Chose a mixture component (cluster), m, with probability p(m)
— For the component m, consult the particular Gaussian distribution
— Generate a sample from that distribution

¢ This models the distribution

p(x) = Zp(m)p(x I m) where  p(xIm)=N(n,.X)

m \

* And for multiple points o= { @m}
p({x, }) = H[Zp(m)p(x | m)]

i m

Segmentation/Grouping by EM

Since we don’t know which point comes from which segment, we have to use
an estimate of the probabilities that a given point belongs to a given segment.

(m)
Formally, these probabilities can be denoted p(m | Xi N @ )

This is the probability that x; is in cluster m, given the model

If we assume we know these estimates for the probabilities of the missing
values, we can then estimate the means of the Gaussians for each segment.

Specifically, we compute means and variances by weighting the standard
formulas by these probabilities.

Segmentation/Grouping by EM

*  We estimate the mean for each segment by:

Iteration (step) —\
’ (s)
> xp(mlx,00)

(s+1)
M= =
Zizlp(m Ix,,0,")

* Variances/covariances work similarly

We can sort out the chicken! ‘

Details optional

Segmentation/Grouping--E Step

Given parameters, the probability that a given point is associated with each cluster
is can be computed by:
(s) (s)
o, 'px,16,")
M
(s) (s)
3 p(x, 161)

k=1

p(m1x,0%)= (s indexes iterations)

The book uses 1,, for p(m1x,,0%) (I suggests “indicator variable”)

Im

(Also, my copy of the book’s version of the above equation looks wrong to me--
the index / applies to points and the index for theta should refer to groups)




Details optional

o, = p(m) (Standard notation)

P, 1m.6,")p(m)

1x,0%) = Bayes

piml1x,0%) P, 160) (Bayes)

p(x, 16 = le p(x,,m,0") (Marginalization)

P, 169)=D" p(m)p(x, 1 m.61") (Definition of "I")
Therefore
a(ﬂp(x I 9(.\))

p(,nlx ’9(\))= 7 m L m

! S o px, 16) We can do the egg!

Segmentation/Grouping by EM
e This is a lot like K-means

¢ Instead of binary cluster membership, each point has some probability of
being in each cluster

¢ In addition to computing means, we generally also compute variances

— Setting all variances equal in advance (“tied parameters”) is simplest, but often
having different variances is important.

— Can fit different variances to each cluster (most common)

— Can fit covariance matrices instead of variances (usually not possible if the
dimension is over five or s0)

Segmentation with EM

Fae.

Figure from “Color and Texture Based Image Segmentation Using EM and Its Application to Content
Based Image Retrieval”,S.J. Belongie et al., Proc. Int. Conf. Computer Vision, 1998, c1998, IEEE

Motion segmentation with EM (one)

¢ Recall the baby on the couch
¢ Alternative algorithms based on previous examples?




Motion segmentation with EM (one)

* Can treat background/foreground assignment as missing
values!

Motion segmentation with EM (two)

¢ Model image sequence as consisting of regions (layers) of parametric motion

— For example, affine motion is popular
v, a b\ x t,
= +
v, c d\y t,

¢ Now we need to
— Determine which pixels belong to which region
— Estimate parameters

— Yet another example of a missing value problem!

Three frames from the MPEG “flower garden” sequence

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE
Transactions on Image Processing, 1994, ¢ 1994, IEEE

Grey level shows region no. with highest probability

Segments and motion fields associated with them

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE
Transactions on Image Processing, 1994, ¢ 1994, IEEE




If we use multiple frames to estimate the appearance
of a segment, we can fill in occlusions; so we can
re-render the sequence with some segments removed.

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE
Transactions on Image Processing, 1994, ¢ 1994, IEEE

RANSAC versus EM

Many, but not all problems that can be attacked with EM can also
be attacked with RANSAC
— For RANSAC, we need to be able to get a parameter estimate with a
manageably small number of random choices.
— RANSAC is often better

Model Selection

* In general, models with more parameters will fit a
dataset better, but are poorer at prediction

* This means we can’t simply look at the negative log-
likelihood (or fitting error)

Top is not necessarily a better
fit than bottom
(actually, almost always worse)

v
>

v




Negative log-likelihood (or fitting error)

Number of parameters in model

Y

Operating point

Negative log-likelihood (or fitting error)

2

Number of parameters in model

We can discount the fitting error with some term in the number
of parameters in the model.

Discounts

Let N be the number of data points, p the number of parameters

AIC (an information criterion)

— choose model with smallest value of

—2L(D:6")+2p

BIC (Bayes information criterion)
— choose model with smallest value of

—2L(D;9*)+ plogN

Minimum description length
— same criterion as BIC, but derived in a completely different way

Cross-validation

Split data set into two pieces, fit to one, and compute negative log-
likelihood on the other
One set is “training data”, the other is “testing data” or “held out data”
Average over different splits
This estimates the quality of your model

— Often (rightfully so) used to compare algorithms
If you are doing model selection, then you choose the model with the
smallest value of this average

— This works because adding parameters causes over fitting of the training
data which gives worse performance on test data

— However, it ignores priors over models




