

Recognition by finding patterns

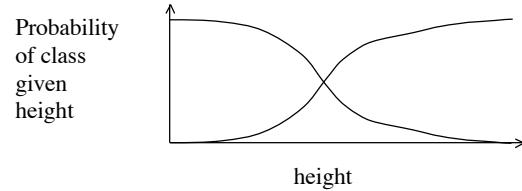
- Template matching with correlation (linear filters) is a simple example of recognition by pattern matching
- Some objects behave like quite simple templates
 - Frontal faces

Recognition by finding patterns

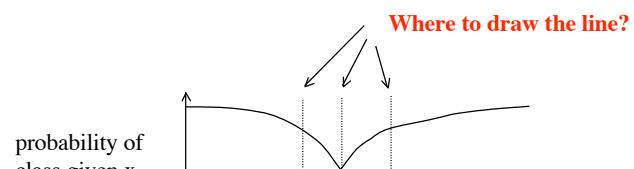
- Example strategy:
 - Find image windows
 - Correct for lighting
 - Pass them to a statistical test (a classifier) that accepts faces and rejects non-faces
- Important high level point:
 - Need to understand relationship between **modeling statistics** and deciding between options (classification AND risk analysis).

Basic ideas in classification

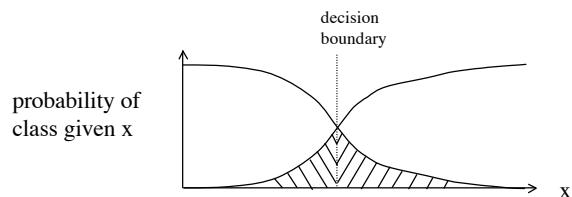
- Concrete example
 - “guess” male / female from height
- Probabilistic approach
 - Consider $P(\text{female}|\text{height})$



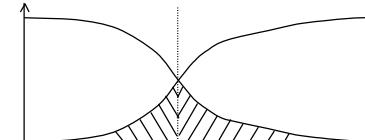
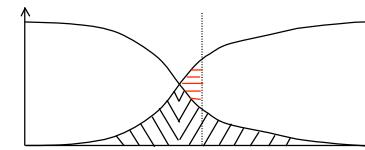
Basic ideas in classification



Basic ideas in classification



Area of intersection under curves gives expected value of making a mistake



Red shows extra that you get wrong with different boundary

Basic ideas in classification

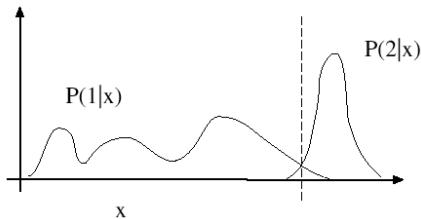
- Concrete example
 - “guess” male / female from height
- Probabilistic approach
 - Consider $P(\text{female} | \text{height})$
- Now consider “risk”
 - Suppose you want to give vaccine based on height for a disease that only males get.
 - There is great benefit to males who may be exposed
 - Vaccines have risk as well as benefit
 - Thus there is also some risk to giving females a vaccine they do not need
- This changes the boundary.

Details omitted in 2010

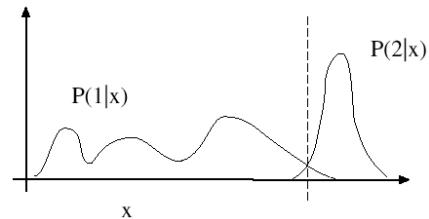
Building classifiers

- Standard scenario
 - Have training data
 - Want to classify new data
- One approach
 - Estimate the probability distributions (we have been thinking about them all along, e.g. $P(\text{I} | \text{x})$)
 - Issue: parameter estimates that are “good” may not give optimal classifiers

Finding a decision boundary is not the same as modeling a conditional density.



Finding a decision boundary is not the same as modeling a conditional density.



Important point: $P(1|x)$ can be inaccurate, but the system can work well, as long as the boundary is correct.

Building classifiers

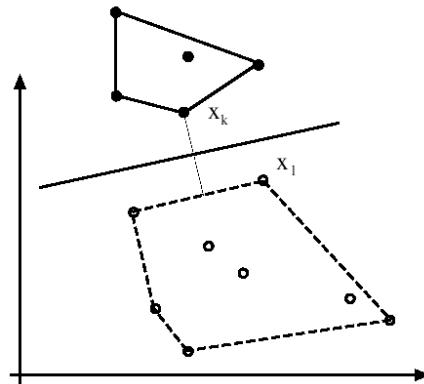
- Standard scenario
 - Have training data
 - Want to classify new data
- One approach
 - Estimate the probability distributions (we have been thinking about them all along, e.g. $P(1|x)$)
 - Issue: parameter estimates that are “good” may not give optimal classifiers
- Another approach
 - Directly go for the boundary

We will start with this one

Support vector machines

- The generic, standard way to do this is with a SVM
- The basic “plug-in classifier” (black box)
- Typically now used for many tasks where before the method of choice was neural networks.
- Very convenient software is now available to do this.
- We will cover the approach briefly

Support vector machines



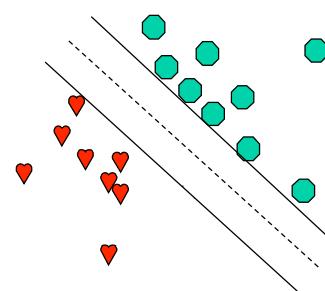
Support vector machines

- If we have a *separating* hyperplane, then if you are on one side $\mathbf{w} \cdot \mathbf{x}_i + b \geq +1$
- If you are on the other side $\mathbf{w} \cdot \mathbf{x}_i + b \leq -1$
- Let y_i be +1 for one class, -1 for the other.

Support vector machines

- Linearly separable data means that we can chose $y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1$
- Consider the best pair of parallel planes that push against points on the two groups.

Support vector machines



Support vector machines

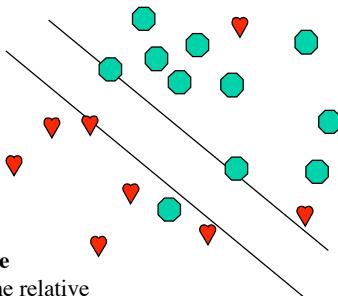
- Consider the best pair of parallel planes that push against points on the two groups.
- The sum of the minimum distances from each group to the other plane can be shown to be:

$$\frac{2}{|\mathbf{w}|}$$

Support vector machines

- Solved by $\begin{aligned} & \text{minimize} && (1/2)\mathbf{w} \cdot \mathbf{w} \\ & \text{subject to} && y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1 \end{aligned}$
- (See book, section 22.5 for how to solve it)
- What if the data is not linearly separable
 - Find “best” plane (see book)
 - The boundary is determined by a few points (the support vectors)

Support vector machines



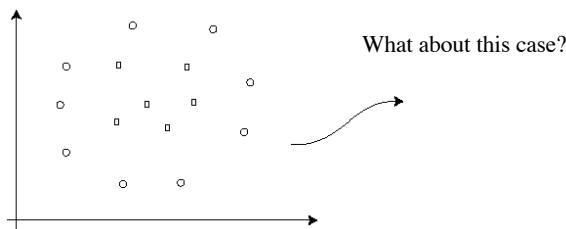
Non-separable case

Cost, C , specifies the relative desire to push the planes apart, versus the number of mistakes.

Support vector machines

- Now that we have the “best” plane, how do we classify?
 - Easy---we have a simple formula for determining which side of the plane we are on!
- Pseudo probabilities can be created from the distance to the plane
- This describes a binary classifier. For more than one class, there are two approaches
 - Multiple one against all
 - All against all, and a consensus measure

Support vector machines (kernel tricks)



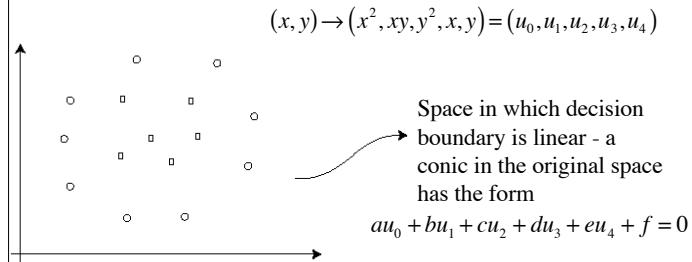
Support vector machines (kernel tricks)

Key observation: The SVM is completely a function of dot products between the vectors.

This means that we can get a non-linear SVM by using a different form of the dot product, $K(\mathbf{x}, \mathbf{y})$.

This is equivalent to a linear classification in a much higher dimensional space.

Support vector machines (kernel tricks)



Testing classifiers

- Standard method is to use Cross-Validation
- Test classification accuracy on data not used in training
- Test generalizability by using data that is progressively different than training data
 - new experiment
 - different camera
 - different researchers