
Introduction to Fourier methods
• Very brief introduction. We don’t have time to go through the math!
• Fourier methods give insight into image processing
• Provides a principled way to think about reversing the effect of a

convolution (e.g., deblurring).
• Provides a way to speed up convolution (depending on the work

flow).

Change of Basis

Recall that X=(xi,xj,xk) means that 
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Change of Basis

Suppose that we want to express X
relative to a different basis.
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Again,

Change of Basis
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xa = X • ˆ a 

= xi
ˆ i • ˆ a + x j

ˆ j • ˆ a + xk
ˆ k • ˆ a 

= (xi ,  x j  xk )•(ˆ i • ˆ a ,  ˆ j • ˆ a ,  ˆ k • ˆ a )

(Similarly for b and c)

So, the change of basis can be done by a matrix
multiplication
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Change of Basis
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Main  points for what follows

• We can express a vector with
respect to many basis

• We get the weights (coordinates) by
dot products of the vector with the
basis vectors
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ˆ c 

• Represent function (image) with respect to a new basis
– Think of functions (images) as vectors with many components
– This means that they are a weighted sum (linear combination) of basis vectors
– We can represent the same entity as a linear combination over sets of different

basis vectors
– In canonical/usual form the basis vectors are box(i,j) (discrete) or delta

functions (continous).

– In Fourier analysis, the basis vectors are sinusoids

Bases for Images

Example 2D Fourier
basis function

Another example



Yet another Introduction to Fourier methods
• A periodic function (vector) can be decomposed into a sum of sines

and cosines
• Sines and cosines are orthogonal
• This forms a new basis for the function (vector)

http://mathworld.wolfram.com/FourierSeries.html

Introduction to Fourier methods
• Because the basis functions (sines/cosines) are orthogonal, we find

their coefficients by integrating against them (or, in the discrete
case, taking dot products)---recall the change of basis review

• A discrete signal (e.g. image) is “band limited”-->frequences higher
than 1/2 cycle per pixel are lost

• Sampling theorem: We can reconstruct a “band limited” signal
from a limited number of samples
– This is why adding even more bits to the digital representation of

music does not help--you can only hear up to certain frequency;
sampling more than that rate does not do any good.



The 2D Fourier Transform

• Need both sines and cosines (in the general case)

• In 1D the frequency (a single number) tells us which sine (or cosine)

• In 2D we have frequency and orientation (period and direction)

• Encode these with a pair of numbers, (u,v)

The 2D Fourier Transform

• We use complex numbers for convenient representation

• Recall that

• And the basis function

• (u,v) gives the frequency and orientation of the sinusoids
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e
! i2" (ux+vy)

= cos(2" (ux + vy))+ i sin(2" (ux + vy))

ex am

� 

e
! i"

= cos(" ) + i sin(" )

To get some sense of what
basis elements look like, we
plot a basis element --- or
rather, its real part ---
as a function of x,y for some
fixed u, v. We get a function
that is constant when (ux+vy)
is constant. The magnitude of
the vector (u, v) gives a
frequency, and its direction
gives an orientation. The
function is a sinusoid with
this frequency along the
direction, and constant
perpendicular to the
direction.

(u,v)=(1,2)
(length not
to scale)

-1 1

Another example

(u,v)=(10,-5)
(length not to
scale)

-1 1
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The 2D Fourier Transform

• The Fourier transform expresses the image in the sinusoidal basis
denoted by:

• To get the weights (coefficients) we integrate (continuous case) or take
dot products (discrete case)

• The transform (continuous case) is given by
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e
! i2" (ux+vy)

ex am The Fourier Transform
• Have both cosines (gives real part) and sines

(imaginary part)
• Recall that for an even (symmetric) function

f(-x)=f(x), and for an odd (anti-symmetric)
one f(-x)=-f(x)

• Sine gives odd part of function, cosine even
part

• If the function is even  there are only cosine
terms, and the result is real (cosine transform)

Example bases
with different (u,v)

Phase and Magnitude
• Fourier transform of a real function is complex valued

– transform of image is becomes two images  (real and imaginary part)
– difficult to plot, visualize
– instead, we can think of the phase and magnitude of the transform

• z = a + bi
– Phase angle:     theta=arctan(b/a)
– Magnitude:       |z|=sqrt(a^2 + b^2)

• Magnitude combines both cosine (real) and sine (imaginary) terms
– Large magnitude means large energy for that (u,v)

• Phase is the relation between with cosine and sine terms

Phase and Magnitude
• Curious fact

– all natural images have about the same magnitude transform
– hence, phase seems to matter, but magnitude largely doesn’t

• Demonstration
– Take two pictures, swap the phase transforms, compute the inverse - what

does the result look like?



This is the
magnitude
transform
of the
cheetah pic

This is the
phase
transform
of the
cheetah pic



This is the
magnitude
transform
of the zebra
pic

This is the
phase
transform
of the zebra
pic

Reconstruction
with zebra
phase, cheetah
magnitude

Reconstruction
with cheetah
phase, zebra
magnitude



Fourier Transform (continued)
• Important facts

– The Fourier transform is linear
– There is an inverse FT

• Important observation
– The Fourier transform is global--the value for each (u,v) is a function of the

entire image.
– (This is why it is difficult to visualize/understand)

• Relationship to noise and smoothing
– Noise is generally high frequency
– Smoothing strategy

• Take FT
• Threshold higher frequency
• Invert

The Convolution Theorem

• Important result which can have practical impact (convolution
theorem)

• (Depending on your workflow, using the DFT for convolution can
save time).

• A strategy for inverting the effect of a convolution
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Fourier Transform (practice)

• Because of the convolution theorem, the FT gives a convenient way to invert
the effect of convolution.
– For example, often blurring can be modeled as a convolution, and the FT gives a

convenient way to think about de-blurring.

• Fast (O(n*log(n)) methods exist to compute discrete version of Fourier
transform (DFT2 in Matlab, IDFT2 for the inverse).

• If we assume that the image is periodic and symmetric then only the cosine
terms count and we can avoid imaginary components which can speed up and
simplify some tasks (cosine transform; DCT2 in Matlab, IDCT2 for the
inverse).


