

Introduction to Fourier methods

- Very brief introduction. We don't have time to go through the math!
- Fourier methods give insight into image processing
- Provides a principled way to think about reversing the effect of a convolution (e.g., deblurring).
- Provides a way to speed up convolution (depending on the work flow).

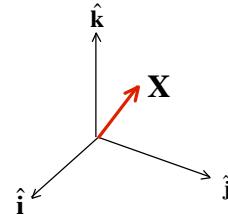
Change of Basis

Recall that $\mathbf{X} = (x_i, x_j, x_k)$ means that

$$\mathbf{X} = x_i \hat{\mathbf{i}} + x_j \hat{\mathbf{j}} + x_k \hat{\mathbf{k}}$$

Note that

$$x_i = \mathbf{X} \bullet \hat{\mathbf{i}} \quad x_j = \mathbf{X} \bullet \hat{\mathbf{j}} \quad x_k = \mathbf{X} \bullet \hat{\mathbf{k}}$$



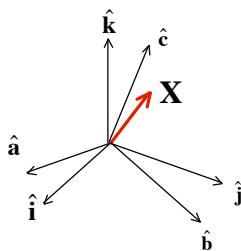
Change of Basis

Suppose that we want to express \mathbf{X} relative to a different basis.

$$\mathbf{X} = x_a \hat{\mathbf{a}} + x_b \hat{\mathbf{b}} + x_c \hat{\mathbf{c}}$$

Again,

$$x_a = \mathbf{X} \bullet \hat{\mathbf{a}} \quad x_b = \mathbf{X} \bullet \hat{\mathbf{b}} \quad x_c = \mathbf{X} \bullet \hat{\mathbf{c}}$$



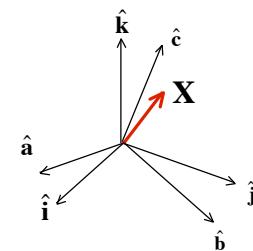
Change of Basis

$$\begin{aligned} x_a &= \mathbf{X} \bullet \hat{\mathbf{a}} \\ &= x_i \hat{\mathbf{i}} \bullet \hat{\mathbf{a}} + x_j \hat{\mathbf{j}} \bullet \hat{\mathbf{a}} + x_k \hat{\mathbf{k}} \bullet \hat{\mathbf{a}} \\ &= (x_i, x_j, x_k) \bullet (\hat{\mathbf{i}} \bullet \hat{\mathbf{a}}, \hat{\mathbf{j}} \bullet \hat{\mathbf{a}}, \hat{\mathbf{k}} \bullet \hat{\mathbf{a}}) \end{aligned}$$

(Similarly for b and c)

So, the change of basis can be done by a matrix multiplication

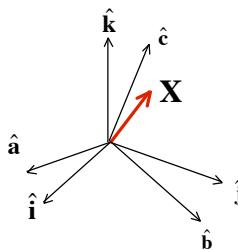
$$\begin{pmatrix} x_a \\ x_b \\ x_c \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{i}} \bullet \hat{\mathbf{a}} & \hat{\mathbf{j}} \bullet \hat{\mathbf{a}} & \hat{\mathbf{k}} \bullet \hat{\mathbf{a}} \\ \hat{\mathbf{i}} \bullet \hat{\mathbf{b}} & \hat{\mathbf{j}} \bullet \hat{\mathbf{b}} & \hat{\mathbf{k}} \bullet \hat{\mathbf{b}} \\ \hat{\mathbf{i}} \bullet \hat{\mathbf{c}} & \hat{\mathbf{j}} \bullet \hat{\mathbf{c}} & \hat{\mathbf{k}} \bullet \hat{\mathbf{c}} \end{pmatrix} \begin{pmatrix} x_i \\ x_j \\ x_k \end{pmatrix}$$



Change of Basis

Main points for what follows

- We can express a vector with respect to many basis
- We get the weights (coordinates) by dot products of the vector with the basis vectors

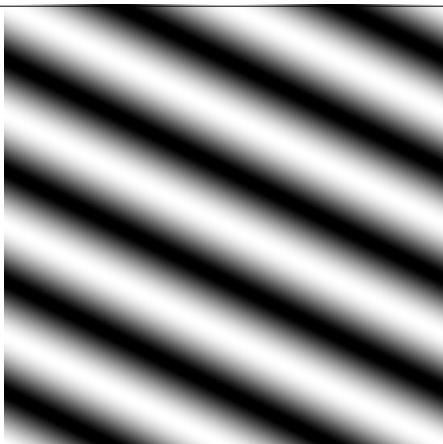


Bases for Images

- Represent function (image) with respect to a new basis
 - Think of functions (images) as vectors with many components
 - This means that they are a weighted sum (linear combination) of basis vectors
 - We can represent the same entity as a linear combination over sets of different basis vectors
 - In canonical/usual form the basis vectors are $\text{box}(i,j)$ (discrete) or delta functions (continuous).

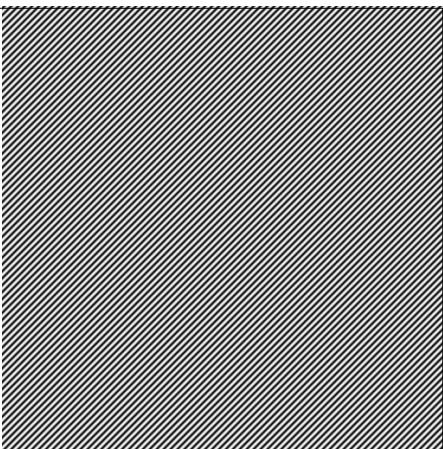
- In Fourier analysis, the basis vectors are **sinusoids**

Example 2D Fourier basis function



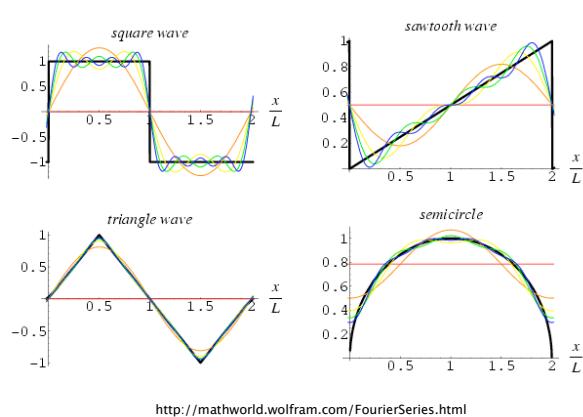
Another example

Yet another



Introduction to Fourier methods

- A periodic function (vector) can be decomposed into a sum of sines and cosines
- Sines and cosines are **orthogonal**
- This forms a new basis for the function (vector)



Introduction to Fourier methods

- Because the basis functions (sines/cosines) are orthogonal, we find their coefficients by integrating against them (or, in the discrete case, taking dot products)---recall the **change of basis** review
- A discrete signal (e.g. image) is “band limited” \rightarrow frequencies higher than 1/2 cycle per pixel are lost
- Sampling theorem: We can reconstruct a “band limited” signal from a limited number of samples
 - This is why adding even more bits to the digital representation of music does not help—you can only hear up to certain frequency; sampling more than that rate does not do any good.

The 2D Fourier Transform

- Need both sines and cosines (in the general case)
- In 1D the frequency (a single number) tells us which sine (or cosine)
- In 2D we have frequency and orientation (period and direction)
- Encode these with a pair of numbers, (u, v)

The 2D Fourier Transform

- We use complex numbers for convenient representation

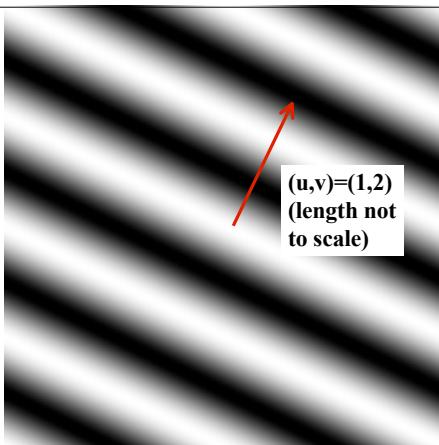
- Recall that $e^{-i\theta} = \cos(\theta) + i \sin(\theta)$

- And the basis function

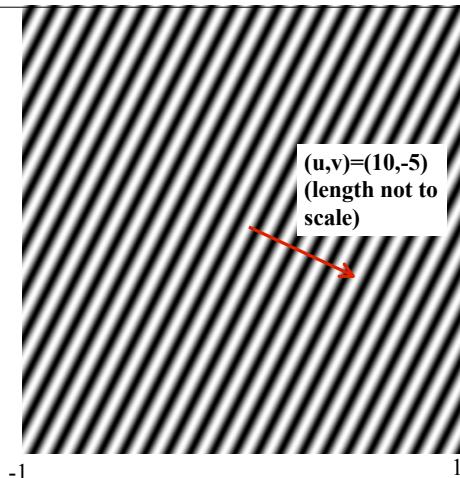
$$e^{-i2\pi(ux+vy)} = \cos(2\pi(ux+vy)) + i \sin(2\pi(ux+vy))$$

- (u, v) gives the frequency and orientation of the sinusoids

To get some sense of what basis elements look like, we plot a basis element --- or rather, its real part --- as a function of x, y for some fixed u, v . We get a function that is constant when $(ux+vy)$ is constant. The magnitude of the vector (u, v) gives a frequency, and its direction gives an orientation. The function is a sinusoid with this frequency along the direction, and constant perpendicular to the direction.



Another example



The 2D Fourier Transform

- The Fourier transform expresses the image in the sinusoidal basis denoted by:
$$e^{-i2\pi(ux+vy)}$$
- To get the weights (coefficients) we integrate (continuous case) or take dot products (discrete case)
- The transform (continuous case) is given by

$$F(g(x,y))(u,v) = \iint_{\mathbb{R}^2} g(x,y) e^{-i2\pi(ux+vy)} dx dy$$

The Fourier Transform

- Have both cosines (gives real part) and sines (imaginary part)
- Recall that for an even (symmetric) function $f(-x)=f(x)$, and for an odd (anti-symmetric) one $f(-x)=-f(x)$
- Sine gives odd part of function, cosine even part
- If the function is even there are only cosine terms, and the result is real (cosine transform)

Example bases with different (u,v)

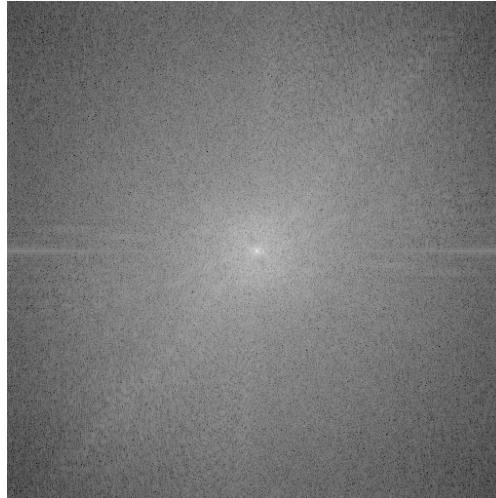
Phase and Magnitude

- Fourier transform of a real function is complex valued
 - transform of image becomes two images (real and imaginary part)
 - difficult to plot, visualize
 - instead, we can think of the phase and magnitude of the transform
- $z = a + bi$
 - Phase angle: $\theta = \arctan(b/a)$
 - Magnitude: $|z| = \sqrt{a^2 + b^2}$
- Magnitude combines both cosine (real) and sine (imaginary) terms
 - Large magnitude means large energy for that (u,v)
- Phase is the relation between cosine and sine terms

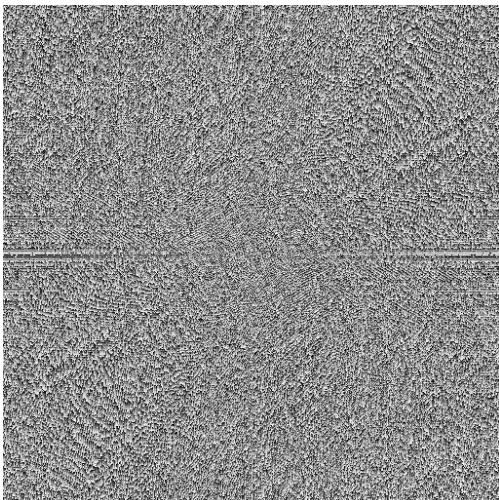
Phase and Magnitude

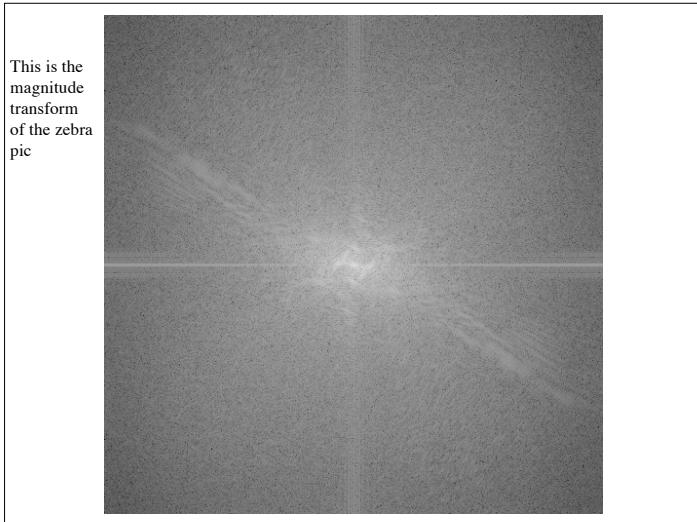
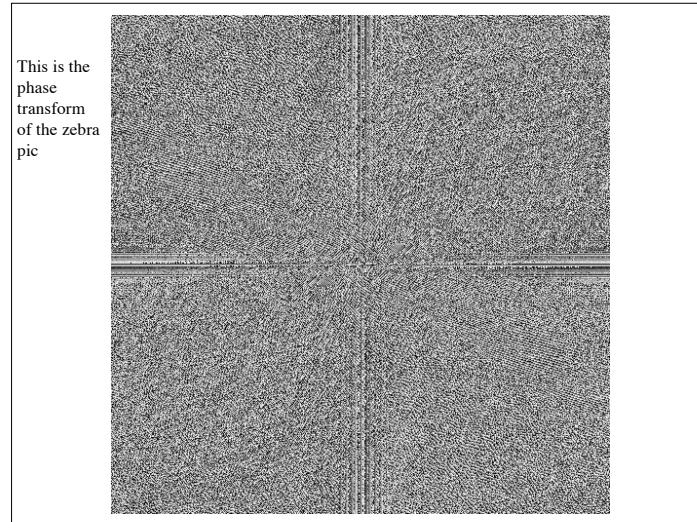
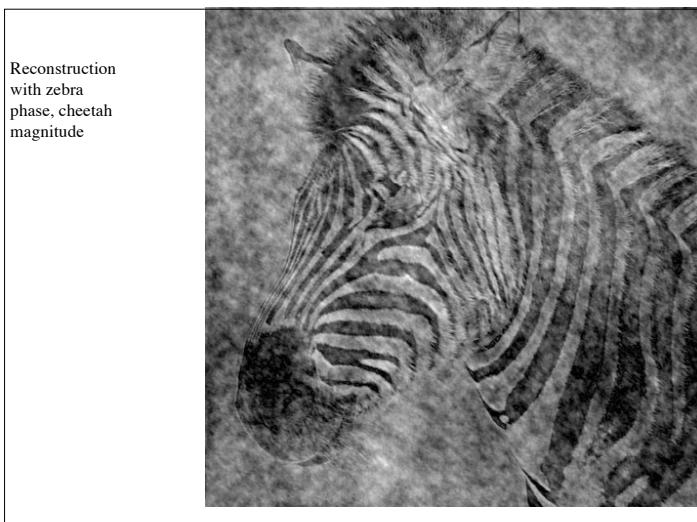
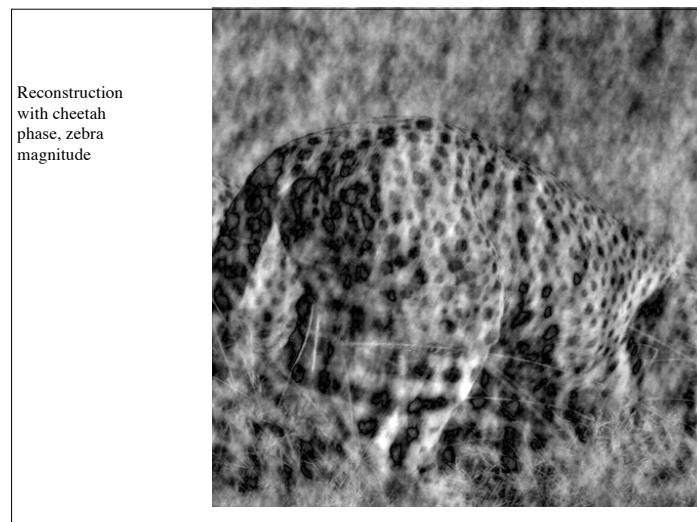
- Curious fact
 - all natural images have about the same magnitude transform
 - hence, phase seems to matter, but magnitude largely doesn't
- Demonstration
 - Take two pictures, swap the phase transforms, compute the inverse - what does the result look like?

This is the
magnitude
transform
of the
cheetah pic



This is the
phase
transform
of the
cheetah pic





Fourier Transform (continued)

- Important facts
 - The Fourier transform is linear
 - There is an inverse FT
- Important observation
 - The Fourier transform is global--the value for each (u,v) is a function of the **entire** image.
 - (This is why it is difficult to visualize/understand)
- Relationship to noise and smoothing
 - Noise is generally high frequency
 - Smoothing strategy
 - Take FT
 - Threshold higher frequency
 - Invert

The Convolution Theorem

- Important result which can have practical impact (convolution theorem)
$$F(a \otimes b) = F(a)F(b)$$
- (Depending on your workflow, using the DFT for convolution can save time).
- A strategy for inverting the effect of a convolution

$$a = F^{-1}(F(a)) = F^{-1}\left(\frac{F(a \otimes b)}{F(b)}\right)$$

Fourier Transform (practice)

- Because of the convolution theorem, the FT gives a convenient way to invert the effect of convolution.
 - For example, often blurring can be modeled as a convolution, and the FT gives a convenient way to think about de-blurring.
- Fast ($O(n \log(n))$) methods exist to compute discrete version of Fourier transform (DFT2 in Matlab, IDFT2 for the inverse).
- If we assume that the image is periodic and symmetric then only the cosine terms count and we can avoid imaginary components which can speed up and simplify some tasks (cosine transform; DCT2 in Matlab, IDCT2 for the inverse).