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Probability Theory

• Probability Theory is the study of how best

to predict outcomes of events.

• An experiment (or trial or event) is a pro-

cess by which observable results come to

pass.

• Define the set D as the space in which ex-

periments occur.

• Define F to be a collection of subsets of D

including both D and the null set. F must

have closure under finite intersection and

union operations and complements.
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• A probability function (or distribution) is a

function P:F → [′,∞] such that P (D) = 1

and for disjoint sets Ai ∈ F it must be that

P (
⋃
∀iAi) =

∑
∀i P (Ai).

• A probability space consists of a sample

space D, a set F, and a probability function

P.

2



Continuous Spaces

• The discussion being presented is given in

discrete spaces, but they carry over to con-

tinuous spaces.

• Probability density functions are zero for

any finite union of points, P (D) =
∫
D p(u)du =

1 and P ∗ event) =
∫
event p(u)du
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Conditional Probability

• Conditional Probability is the (possibly) changed

probability of an event given some knowl-

edge.

• Prior Probability of an event is an event’s

probability before new knowledge is consid-

ered.

• Posterior Probability is the new probability

resulting from use of new knowledge.

• Conditional probability of event A given B

has happened is:

P (A|B) =
P (A ∩B)

P (B)
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• This generalizes to the chain rule:

P (A1∩ ...∩An) = P (A1)P (A2|A1)P (A3|A1∩A2)...P (An|∩n−1
i=1 Ai)

• If events A and B are independent of each-

other then P (A|B) = P (A) and P (B|A) =

P (A) so it follows that P (A∩B) = P (A)P (B)

• Events A and B are conditionally indepen-
dent given event C if

P (A,B,C) = P (A,B|C)P (C) = P (A|C)P (B|C)P (C)



Bayes’ Theorem

• Bayes’ theorem:

P (B|A) =
P (B ∩A)

P (A)
=
P (A|B)P (B)

P (A)

• The denominator P (A) can be thought of

as a normalizing constant and ignored if

one is just trying to find a most likely event

given A.

• More generally if B is a group of sets that

are disjoint and partition A then

P (B|A) =
P (A|B)P (B)

∑
Bi∈B P (A|Bi)P (Bi)
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Random Variables

• A random variable is a function X : D → <n

• The probability mass function is defined as

p(x) = p(X = x) = P (Ax)

where

Ax = |a ∈ D : X(a) = x|

• Expectation is defined as

E(x) =
∑

x
xp(x)

• Variance is defined as

V ar(X) = E((X−E(X))2) = E(X2)−E2(X)

• Standard Deviation is defined as the square
root of variance.
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• Joint probability distributions are possible

using many random variables over a sample

space. A joint probability mass function is

defined p(x, y) = P (Ax, Bx)

• Marginal probability mass functions total

up the probability masses for the values

of each variable separately, for example,

px(x) =
∑
y p(x, y)

• Conditional probability mass function is de-

fined

pX|Y (x|y) =
p(x, y)

py(y)
py(y) > 0

• The chain rule for random variables follows

p(w, x, y, z) = p(w)p(x|w)p(y|w, x)p(z|w, x, y)
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Determining P

• The function P is not always easy to ob-
tain. Methods of construction include Rel-
ative Frequency, Parametric construction,
and empirical estimation.

• Uniform distribution has the same value for
all points in the domain.

• Binomial distribution is the result of a se-
ries of Bernoulli trials.

• Poisson distribution distributes points in such
a way that the expected number of points
in an interval is proportional to the length
of the interval.

• Normal distribution or Gaussian distribu-
tion.

8



Bayesian Statistics

• Bayesian Statistics integrates prior beliefs
about probabilities into observations using
Bayes’ theorem.

• Example: Consider the toss of a possi-
bly unbalanced coin. A sequence of flips s
gives i heads and j tails and µm is a model
in which P(h) = m, then

P (s|µm) = mi(1−m)j

Now suppose the prior belief is modeled by
P (µm) = 6m(1−m) which is centered on .5
and integrates to 1. Bayes’ theorem gives

P (µm|s) =
P (s|µm)P (µm)

P (s)
=

6mi+1(1−m)i+1

P (s)

P(s) is a marginal probability, which means
summing P (s|µm) weighted by P (µm):

P (s) =

∫ 1

0

P (s|µm)P (µm)dm =

∫ 1

0

6mi+1(1−m)i+1dm
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• Bayesian Updating is a process in which the

above technique can be used regularly to

update beliefs as new data become avail-

able.

• Bayesian Decision Theory is a method by

which multiple models can be evaluated.

Given two models µ and v, P (µ|s) = P (s|µ)P (µ)
P (s)

and P (v|s) = P (s|v)P (v)
P (s) . The likelihood ra-

tio between these models is

P (µ|s)
P (v|s) =

P (s|µ)P (µ)

P (s|v)P (v)

If the ratio is greater than 1 then µ is

preferable, otherwise v is preferable.



Information Theory

• Developed by Claude Shannon

• Addresses the questions of maximizing data

compression and transmission rate for any

source of information and any communica-

tion channel.
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Entropy

• Entropy measures the amount of informa-
tion in a random variable and is defined

H(p) = H(X) = −
∑

x∈X

p(x) log2 p(x) = E(log2
1

p(x)
)

• Joint Entropy of a pair of discrete random

variables X and Y is defined

H(X,Y ) = −
∑

x∈X

∑

y∈Y
p(x, y) log2 p(x, y)

• Conditional Entropy of a random variable
Y given X expresses the amount of infor-
mation needed to communicate Y if X is
already universally known.

H(Y |X) =
∑

x∈X

p(x)H(Y |X = x) =
∑

x∈X

∑

y∈Y

p(x, y) log p(y|x)

• The chain rule for entropy is defined
H(X1, ..., Xn) = H(X1) +H(X2|X1) + ...+H(Xn|X1, ..., Xn−1)

11



Mutual Information

• Mutual Information is the reduction in un-

certainty of a random variable caused by

knowing about another. Using the chain

rule for H(X,Y ),

H(X)−H(X|Y ) = H(Y )−H(Y |X)

Denote mutual information for random vari-

ables X and Y I(X;Y ),

I(X;Y ) = H(X)−H(X|Y )

= H(X) +H(Y )−H(X,Y )

=
∑

x∈X,y∈Y
p(x, y) log2

p(x, y)

p(x)p(y)

• Conditional mutual information is defined:

I(X;Y |Z) = I((X;Y )|Z) = H(X|Z)−H(X|Y, Z)
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• The chain rule for mutual information is
defined:

I(X1, ..., Xn;Y ) = I(X1;Y ) + ...+ I(Xn;Y |X1, ..., Xn−1)

=

n∑

i=1

I(Xi;Y |X1, ..., Xi−1)



The Noisy Channel Model

• There is a trade-off between compression

and transmission accuracy. The first re-

duces space, the second increases it.

• Channels are characterized by their capac-

ity, which (in a memoryless channel) can

be expressed C = maxp(X)I(X;Y ) where

X is input to the channel and Y is channel

output.

• Channel capacity can be reached if an input

code X is designed that maximizes mutual

information between X and Y over all pos-

sible input distributions p(X).
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Relative Entropy

• Given two probability mass functions p and

q, relative entropy is defined

D(p||q) =
∑

x∈X
p(x) log

p(x)

q(x)

• Relative Entropy gives a measure of how

different two probability distributions are.

• Mutual Information is really a measure of

how far a joint distribution is from inde-

pendence

I(X;Y ) = D(p(x, y)||p(x)P (y))

• Conditional relative entropy and a chain

rule are also defined.
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The Relation to Language

• Given a history of words h, the next word

w, and a model m, define point-wise en-

tropy as H(w|h) = − log2m(w|h). If the

model is correct point-wise entropy is 0, if

the model is incorrect point-wise entropy is

infinite. In this sense a model’s accuracy is

tested, and one would hope to keep these

’surprises’ to a minimum.

• In practice p(x) may not be known, so a

model m is best when D(p||m) is minimal.

Unfortunately if p(x) is unknown, D(p||m)

can only be approximated using techniques

like cross entropy and perplexity.
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Cross Entropy

• The cross entropy between X with actual

probability distribution p(x) and a model

q(x) is

H(X, q) = H(X)+D(p||q) = −
∑

x∈X
p(x) log q(x)

• If a large sample body is available cross

entropy can be approximated

H(X, q) ≈ 1

n
log q(x1,n)

• Minimizing cross entropy is equivalent to

minimizing relative entropy, which brings

the model’s probability distribution closer

to the actual probability distribution.
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Perplexity

• ’A perplexity of k means that you are as

surprised on average as you would have

been if you had had to guess between k

equiprobable choices at each step.’ It is

defined

perplexity(x1n,m) = 2H(x1,n,m) = m(x1n)
1
n
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The Entropy of English

• English can be modeled using n-gram mod-

els, or Markov chains. They assume the

probability of the next word relies on the

previous k in the stream.

• Models have exhibited cross entropy with

English as low as 2.8 bits, and experiments

with humans have resulted in cross entropy

of 1.34 bits.

18


