Solutions to problems week 2.

1.
1 1

Do)=Y p-—p) =l pp=1

=0 =0

1
Ela] =Y ap"(1—-p)' " =p+0=p
=0

var(z) = Ez?] — (B[2])* = p— p? = p(1 - p)

2. A student’s solution: For Bayesian inference it is possible to specify any prior distribution for the parameters.
But some priors result in a posterior distribution that resembles the prior in its form. Such priors are called
conjugate priors. In addition to being mathematically convenient, conjugate priors most often lead to a more
intuitive interpretation of the posterior. This is because the change in the shape of the posterior from the prior
after incorporating the likelihood can be summarized using only the changes in the parameters governing the form
of the prior(and posterior).

For example, the conjugate prior for the parameter p for Bernoulli observations is the Beta distribution.

3. a)

S =ULU’. For S~!, we have S~! = (ULU')~. Since U is orthogonal, we have that U’ = U~!, and (U’)~* = U.
Then,
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Equation 2.48 is:
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If we multiply by u; on the right on both sides, we have:

D D
Yu; = Z /\iuiuiTuj = Z Aiuily; = Aju; = A\juj, where we have used equation 2.46.
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4.
a) See Figure 1.
b)
. . . 7.8194 —3.9136
The mean is [-1.9979 2.9998]. The covariance is <—3.9136 3 9636 )

¢) See Figure 2 and Figure 3.

Q)

One student’s answer:

The histograms in figure 2 seem to imply different underlying distri- butions for y for the two different ranges
of x. So the distribution of y is most likely not independent of x. That is y is not independent of x.

Second student’s answer:

The two histograms are very different. The first one has a peak between 1 and 2 while the second has peak
between -1 and 0. The first has spread between -2 and 4 while the second spreads from -4 to 2. The histograms
suggest that p(Y|X € (—2.1,-1.9)) # p(Y|X € (2.9,3.1)) which means that X and Y are not independent.

€)

The transformation matrix (y = U(x — p)) is:

- (04985 —O.8669>

—0.8669 0.4985 )°

See Figure 4 for the results.
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Figure 1: The data.

5. (Comments from Kobus). This problems was a bit ill-formed. As pointed out in class, if we were to use the
method implied by 2.71 to prove that a formula was in fact a Gaussian, we would need to consider the interaction
with any multipliers in front of the exp() that we had, because the final form of the Gaussian has a specific factor
in from of the exp().

However, since any part of the constant term that is not needed to “complete the square” can be subtracted
out (becoming part of the factor in front of the exp()), the exponentiation of the form 2.71 gives a form that is
proportional to a Gaussian regardless of the constant term. This in turn means that either the formula will be a
Gaussian (the complete expression has unit integral), or it is not a valid probability distribution.

In summary, the method outlined in page 86-87 is a good way to find the mean and variance of the Gaussian
on the assumption that the function is a probability density function. However, it is not foolproof without that
assumption, unless the constants are checked also.

6. See Figure 5



Figure 2: The data in the range (-2.1,-1.9)



Figure 3: The data in the range (2.9,3.1)
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Figure 4: The data in the new coordinate system (axes scaled approximately equally).
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The density function of a multivariate D dimensional Gaussian is given
by
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Let (A), denote a column vector formed from the matrix A by choos-
ing the elements from A sequentially in the order left to right and top
to bottom (raster scan). Comparing the above equation with the general
representation of exponential family of distributions
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Figure 5: Student’s solution to problem 6.



Someone else simplified matters by a change of coordinates to zero mean and diagonal
covariance using the eigenvectors of the covariance matrix. If one does this, then one
needs to take care that the exponantial family equations are terms of the new variables
(they cannot be mixed haphazardly).

The solution that was provided in class used trace identities to help manage the matrix
elements. These identities are generally useful, so this solution is provided here as well:

6. Problem 2.57
ans The Exponential density has the form

p(x) = h{z)g(n)exp(n'u(z))
For D-dimensional Ganssian,
p(x) = (2m) /28| ezp=(z — )5 (z — )
The exponential part is
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I (6.2), Tr(A) = .7, Ay. Then Tr(AB) = Tr(BA). In (6.3), vec(A) =
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Then (6.4) is the exponential form with
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The right hand side {RHS) is given hy:
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This iz clearly the result expected, since it corresponds to the maximmm likelihood estimators for
the Ganssian distribution derived previously.

We can use Gaussian Elimination to find the inverse. Let M = (A — BD-'C)~1,
then

A B |Io . A-CBD! 0 | I —-BD!
¢ DJ|ol o C D | o0 1
B I 0o | M —MBD!
o C D 0 |
. I o M ~MBD™!
- 0 D| -CM I+CMBD!
. 10 M —~MBD-!
- 0 I | -D'CM D-!+D-'CMBD-!
Thus,
A BY ' M ~MBD-!
C D ~\ -D-'CM D-!'+D-'CMBD-!
Proof:



9. Start to the solution is given, but not completed
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