
Solutions for week 03

1. Using the table of joint probabilities, we can explicitlycompute the joint distri-
bution p(a, b) for all possible values of the variablesa andb and the product of
their marginals:

a b p(a, b) × 1000 p(a) × 1000 p(b) × 1000 p(a)p(b) × 1000
0 0 336 600 592 355.2
0 1 264 600 408 244.8
1 0 256 400 592 236.8
1 1 144 400 408 163.2

Clearly p(a, b) , p(a)p(b).

Similarly we can check for conditional independence givenc by writing down a
similar table for conditional joint and marginal distributions.

c a b p(a, b|c)× 1000 p(a|c) × 1000 p(b|c) × 1000 p(a|c)p(b|c)× 1000
0 0 0 400 500 800 400
0 0 1 100 500 200 100
0 1 0 400 500 800 400
0 1 1 100 500 200 100
1 0 0 276.9 692.3 400 276.9
1 0 1 415.4 692.3 600 415.4
1 1 0 123.1 307.7 400 123.1
1 1 1 184.6 307.7 600 184.6

Observing the table,p(a, b|c) = p(a|c)p(b|c) for all values ofa, b andc.

2. Consider a formulation of the logical-OR function over the set of binary variables
xi ∈ {0, 1} wherei ∈ {1, . . . ,M}.

y = 1−
M∏

i=1

I0(xi)

whereI0 is an indicator function defined by

I0(x) = 1, x = 0

= 0, x = 1

1



It is easy to see that the product term goes to zero when at least one of thexi

is 1 leading to a logical OR function. This can be converted toa soft-OR func-
tion by considering eachxi as a binary random variable taking values in{0, 1}
with p(xi = 1) = µi. By replacing the indicator functions with the probabilities
p(xi = 0) = (1− µi), we obtain a function which looks similar to the above. But
the left hand side would now indicate the probability of at least one of thexi as-
suming 1. This is because the second term is the probability of all of the xi being
zero assuming they are independent. The noisy-OR function is obtained by con-
sidering only those variables in the product term whose value has been observed
to be 1. Then the left hand side would denote the probability of observing at
least one of thosexi to be 1. Further an additional binary random variablex0 is
introduced whose value is always forced to 1. But it can be interpreted as having
the probabilityp(x0 = 1) = µ0. By including this additional random variable and
writing out the soft version of the OR function

p(y = 1|x0, x1, . . . , xM) = 1− p(x0 = 0)1
M∏

i=1

p(xi = 0)xi

Sincex0 is always forced to 1, we obtain a noisy soft-OR function as

p(y = 1|x1, . . . , xM) = 1− (1− µ0)
M∏

i=1

(1− µi)xi

When all thexi are zero, thenp(y = 1|x1, . . . , xM) = µ0. It is nothing but the
probability of getting atleast one 1 among all the observedxi that are 1. In
this case, the only variablex0 is 1 and hence the result. The value ofµ0 can
also be interpreted as the value of the noisy-OR function when all the variables
xi ∈ {1, . . . ,M} are observed to be 0.

Solution from a second student is in figure 1.

Solution from a third student is in figure 2.

3. The joint distribution implied by the graph is given by

p(a, b, c, d) = p(a)p(b)p(c|a, b)p(d|c)

The distributionp(a, b) is obtained by marginalizing the above joint distribution
w.r.t. the variablesc andd

p(a, b) =
∑

c

∑

d

p(a, b, c, d)

=

∑

c

∑

d

p(a)p(b)p(c|a, b)p(d|c)

= p(a)p(b)
∑

c

p(c|a, b)
∑

d

p(d|c)

= p(a)p(b)
∑

c

p(c|a, b)

= p(a)p(b)
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Figure 1: An approach to problem 2.

3



Figure 2: An approach to problem 2.

Thereforea y b | ∅.

Similarly the conditional joint distributionp(a, b|d) can be obtained as

p(a, b|d) =
p(a, b, d)

p(d)

=

∑
c p(a, b, c, d)

p(d)

=

∑
c p(a)p(b)p(c|a, b)p(d|c)

p(d)

=
p(a)p(b)

∑
c p(c|a, b)p(d|c, a, b)

p(d)

=
p(a)p(b)

∑
c p(c, d|a, b)

p(d)

=
p(a)p(b)p(d|a, b)

p(d)

So in general,p(a, b|d) , p(a|d)p(b|d). Hencea 6y b | d

Solution from a second student is in figure 3.
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Figure 3: An approach to problem 3.
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4. Writing down the expression for the complete energy function

E(x , y ) = h
∑

i

xi − β
∑

{i, j}

xix j − η
∑

i

xiyi

Retaining only the terms that containx j as a factor

E j = hx j − x j(β
∑

k

xk) − ηx jy j

wherek goes over all the neighbors ofx j. The difference between the energy
function for the two different values ofx j (+1, -1) is given by

∆E = E j|x j=1 − E j|x j=−1

= 2h − 2β
∑

k

xk − 2ηy j

The above expression shows that the difference in the values of the energy func-
tion associated with two states of a given variablex j depends only on the quan-
tities that are local tox j.

5. Bayes Classifier Method

Bayes’ theorem specifies that the posterior is proportionalto likelihood times
prior,

p(C|d) =
p(d|C) · p(C)

p(d)

To construct our Naı̈ve-Bayes classifier, we assume that thegrid cells are con-
ditionally independent given the class (“face” or “no-face”) of the training data.
We define a likelihood functionp(C|di) for each cell, presuming Gaussian dis-
tribution of the data in each of the 7x7 = 49 cells. This yields a total of 98
sets of conditional Gaussian parameters. The parameters are determined by a
maximum-likelihood fitting of the Gaussian to the data points in the 100 training
samples in each class. That is, we fit the Gaussian to the 100 sample points cor-
responding to each of the 49 cells of the “face” and “no face” training groups,
respectively. In the case of max-likelihood, the best-fitting mean and variance
are determined as simply the sample mean and variance of the training points in
each cell. Our prior,p(C), is defined trivially as the number of images falling
into each class.

We can simply take the ratio of the posteriors for the “face” and “no face” classes,
such that the normalization terms cancel. Also, working with the (natural) log-
posterior avoids numerical difficulties due to limited machine precision. This
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yields the composite log-posterior ratio

log
p(C f |d)

p(Cn|d)
= log

p(d|C f )

p(d|Cn)
+ log

p(C f )

p(Cn)

= log

∑cells
i p(di|C f )∑cells
i p(di|Cn)

+ log
p(C f )

p(Cn)

When this ratio is greater than 0, the given test image is considered a face.

Assumptions

(a) The most significant assumption is that of strong conditional independence:
given the class of the data, all training images will be of that class. In other
words, if our class is “face,” our training data should represent only faces.

(b) As there are equal numbers of training points for the two classes, our prior
is rather uninformative. We can only conjecture that eitherimage class will
be seen with 50% probability; this effectively cancels the influence of the
prior in our Bayesian calculation.

(c) We assume a Gaussian density function is representativeof the data for
each cell, and that our maximum likelihood obtained from thetraining
sample is a reasonable approximation of the “true,” unobservable mean and
variance of each cell.

Results

Our Naı̈ve-Bayes classifier properly detected 11 of 13 facesin the “face” test
group, while improperly detecting 1 face out of 13 samples inthe “no face” test
group. Upon running the classifier against the original training sets, we found
that 9 of 100 samples in the “face” group were improperly classified, while 15
of 100 samples in the “no face” group were misclassified.

Solution from a second student is is in figure 4.
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Figure 4: An approach to problem 5.
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