Solutions for week 03

1. Using the table of joint probabilities, we can explicilgmpute the joint distri-
bution p(a, b) for all possible values of the variablasandb and the product of
their marginals:

a| b | p(ab)x1000| p(a)x 1000 | p(b) x 1000 | p(a)p(b)x 1000
0|0 336 600 592 355.2
0|1 264 600 408 244.8
1|0 256 400 592 236.8
111 144 400 408 163.2

Clearly p(a, b) # p(a) p(b).

Similarly we can check for conditional independence gigdry writing down a
similar table for conditional joint and marginal distrilmurts.

c| al|b| p(ablc)x1000| p(ac)x 1000 | p(bic) x 1000 | p(alc)p(bic) x 1000
0[0|0 400 500 800 400
0[0f1 100 500 200 100
0[1(0 400 500 800 400
0[1(1 100 500 200 100
1(0/|0 276.9 692.3 400 276.9
1(0|1 415.4 692.3 600 415.4
1(1|0 123.1 307.7 400 123.1
1(1(1 184.6 307.7 600 184.6

Observing the tablgy(a, bic) = p(alc) p(bic) for all values ofa, b andc.

X € {0, 1} wherei € {1,..., M}.

M
y=1- ]_[ lo(X;)
i1

wherelg is an indicator function defined by

lo(X) =1,x=0
=0,x=1

. Consider a formulation of the logical-OR function oves et of binary variables




It is easy to see that the product term goes to zero when atdeasof thex;

is 1 leading to a logical OR function. This can be converted #ft-OR func-
tion by considering eacly as a binary random variable taking valueqin 1}
with p(x = 1) = . By replacing the indicator functions with the probabdi
p(xi = 0) = (1 - 1), we obtain a function which looks similar to the above. But
the left hand side would now indicate the probability of @dtone of theg; as-
suming 1. This is because the second term is the probalkifilétly of the x; being
zero assuming they are independent. The noisy-OR fundiohtained by con-
sidering only those variables in the product term whoseevbas been observed
to be 1. Then the left hand side would denote the probabifitybserving at
least one of thosg to be 1. Further an additional binary random variaklés
introduced whose value is always forced to 1. But it can berpreted as having
the probabilityp(xo = 1) = uo. By including this additional random variable and
writing out the soft version of the OR function

M
Py = 1o, Xa, .., Xm) = 1= p(xo = O)* | | PO = 0)*

i=1

Sincexg is always forced to 1, we obtain a noisy soft-OR function as

M
Py = Lxa,.., Xw) = L= (L= po) [ (21— pai)
i=1

When all thex; are zero, themp(y = 1|x,...,Xm) = uo. It is nothing but the
probability of getting atleast one 1 among all the obserxethat are 1. In
this case, the only variabbg is 1 and hence the result. The valuegfcan
also be interpreted as the value of the noisy-OR functiomadikethe variables
X € {1,..., M} are observed to be 0.

Solution from a second student is in figure 1.
Solution from a third student is in figure 2.

. The joint distribution implied by the graph is given by
p(a, b, ¢, d) = p(a) p(b) p(cla, b) p(dic)

The distributionp(a, b) is obtained by marginalizing the above joint distribution
w.r.t. the variables andd

p(a.b) = Z ; p(a.b.c.d)
= Z ; p(a) p(b) p(cla. b) p(dic)
= p(a)p(b) Z p(cla. b) ; p(dic)
= p(a)p(b) Z p(cia. b)

= p(@)p(b)



2. Problem 8.6
ans The logical-OR function can be represented as

M
p(yzl\xl,...,:cM)zl—HI(:c.i:O)
i=1

where I(A) is the indicator function of set A which takes value 1 on A, 0 on
A¢. We approximate I(x; = 0) by the function which is 1 — p; when z; = 1 and
1 otherwise, that is (1 — p;)*. Then Hfbil(l = e g Hfil I(z; = 0), so the

probability
M

p(y = 1|1"17 vies vCCM) =] e H(l — ‘U,,,,:)"E'i

=it

is smaller than the logical-OR function. The factor (1 — po) has a smoothing
effect, it increases the probability to pg when all z; are 0, else decreases it. Thus
(8.104) can be called the noisy OR function.

Figure 1: An approach to problem 2.



2. An alternative representation of Figure 8.13 is given by

M

ply=1lz1,...,xn) = 1—(1—po) [J(1 — ps)™
=1

Evaluating the equation with p; and x; set to arbitrary values, it is «
the above equation evaluates to

ply=llzi, ., 2m) = z+{1—2)o

Setting po = 1, we see that the function does not behave as the OR
since the result is 1 regardless of the input values. Setting pp = |
that the function returns a 0 when all the input values are 0 and a p:
0 < p(y = 1|z1,...,2n) < 1 otherwise. Thus, the probability functior
as a soft OR.

Figure 2: An approach to problem 2.

Thereforea 1L b | 0.
Similarly the conditional joint distributiom(a, bld) can be obtained as

p(a, b, d)
p(a, bd) o)
_ 2cP(ab,cd)
- p(d)
_ 2c P(@)p(b)p(cla, b)p(dic)
p(d)
p(a)p(b) > p(cla, b)p(dic, a, b)
p(d)
p(a)p(b) > p(c, dia, b)
p(d)
_ p@)p(b)p(dia, b)
p(d)

So in generalp(a, bld) # p(ald)p(bld). Hencea 4 b|d
Solution from a second student is in figure 3.

4



3. Problem 8.10
ans Figure8.54 represents the distribution

p(a,b, ¢,d) = p(a)p(b)p(cla, b)p(d|c) (3-1)

From that we can get p(a,b) which is
pla,b) = pla,b,c,d)
e,d
=p(a)p(b) Y _(p(cla,b)(>_ p(dlc)))
c d

p(d|c) defines a probability distribution over d, so >, p(d|c) =1V c¢. Similarly
p(cla,b) defines a probability distribution for any a and b, so 3 _p(cla,b) = 1.
This implies, p(a,b) = p(a)p(b). So a L b|¢.

For a L bld, p(a,b,d) should factor out as f(a,d)g(b,d) for some functions f
and g. But (3.1) implies,

pla,b,d) = p(a)p(b) D plela, b)p(dle) (3.2)

The sum in (3.2) depends on a, b and d; and in general does not factor out as
required. So a } b|d.

Figure 3: An approach to problem 3.



4. Writing down the expression for the complete energy fiamct

E(.Y)=h) % =B %Xj—n ) x¥

{i} i
Retaining only the terms that contaipas a factor

Ej = hx; = X(8 ) %) = 1y,
k

wherek goes over all the neighbors &f. The diference between the energy
function for the two diferent values ox; (+1, -1) is given by

AE = Elej:l - Ej|Xi:71
k

The above expression shows that thi@atlence in the values of the energy func-
tion associated with two states of a given variahlelepends only on the quan-
tities that are local te;.

5. Bayes Classifier Method

Bayes’ theorem specifies that the posterior is proportitmédikelihood times
prior,

p(dIC) - p(C)
p(Cld) o(d)
To construct our Naive-Bayes classifier, we assume thagridecells are con-
ditionally independent given the class (“face” or “no-fgoaf the training data.
We define a likelihood functiop(C|d;) for each cell, presuming Gaussian dis-
tribution of the data in each of thex7 = 49 cells. This yields a total of 98
sets of conditional Gaussian parameters. The parameteidesermined by a
maximume-likelihood fitting of the Gaussian to the data psintthe 100 training
samples in each class. That is, we fit the Gaussian to the b@f@ispoints cor-
responding to each of the 49 cells of the “face” and “no facaihing groups,
respectively. In the case of max-likelihood, the bestrfiftmean and variance
are determined as simply the sample mean and variance aBihang points in
each cell. Our priorp(C), is defined trivially as the number of images falling
into each class.

We can simply take the ratio of the posteriors for the “faced &no face” classes,
such that the normalization terms cancel. Also, workindiite (natural) log-
posterior avoids numerical fiiculties due to limited machine precision. This



yields the composite log-posterior ratio

p(Csld) p(dCr) p(Ct)
pCod) ~ 9 pdCy T 9 nCy
»S p(diiCy) o p(Cr)

T pdICy O pCr)

log

When this ratio is greater than 0, the given test image isiden=d a face.

Assumptions

(a) The most significantassumption is that of strong coowléiindependence:
given the class of the data, all training images will be of thass. In other
words, if our class is “face,” our training data should reyergt only faces.

(b) As there are equal numbers of training points for the tlasses, our prior
is rather uninformative. We can only conjecture that eitherge class will
be seen with 50% probability; thigfectively cancels the influence of the
prior in our Bayesian calculation.

(c) We assume a Gaussian density function is representatitree data for
each cell, and that our maximum likelihood obtained from titaéning
sample is a reasonable approximation of the “true,” unoladde mean and
variance of each cell.

Results

Our Naive-Bayes classifier properly detected 11 of 13 fawake “face” test
group, while improperly detecting 1 face out of 13 samplethe“no face” test
group. Upon running the classifier against the originahirgy sets, we found
that 9 of 100 samples in the “face” group were improperly siféed, while 15
of 100 samples in the “no face” group were misclassified.

Solution from a second student s is in figure 4.



5. ans Let the two classes be 1 and 2. Their prior probabilities are
p(1)=p(2) =05
For any = € RP, we assume

p(z|1) = Np(p1,%1)
p(z|2) = Np(p2,X2)

where X1 and ¥y are diagnol. We have a training data x = {z1,...,zn} from
class 1 and another training data y = {y1,...,yam} from class 2. Then for a test
data z, we compute p(1|z,x,y) and p(2|z,x,y), compare them, and assign z to
the class with a greater posterior probability. This is the Naive-Bayes classifier.
The probabilities are

p(ilz,x,y) o< p(zli, x, y)p(ilx,y)

p(zli,%,y) = Np(fti, ¥)

N M

p(llx,y) = M+ N p(2lx,y) = M+ N
and (fi;,%;) are the MLE’s of (u;, Y;) obtained from the training data.
In this case M = N = 100, so the classifier compares Np(z|i1,%1) and
Np(z|fiz, 82). For this sample, this classifier missclassifies 9 times for the face-
train, 15 times for the no-face-train, 2 times for the face-test and 1 time for the
face-test.
We may drop the restriction on ¥; to be diagnol and get the “Nonnaive-Bayes
classifier”. There was no misclassification for this classifier, neither for the train-
ing data nor test data.

Figure 4: An approach to problem 5.



