
Answers to problems for Week 10
Ans 1

w(τ+1) = w(τ) − η∇En

Sum of the squares error function is given by

En(w) =
1

2
{tn − wT φ(xn)}2

Taking gradient we have

∇En(w) = −(tn − wT φ(xn)φ(xn)

and substituting in the above equation we get

w(τ+1) = w(τ) − η(−(tn − w(τ)T φn))φn)

w(τ+1) = w(τ) + η(tn − w(τ)T φn)φn)

Ans 2
For Bayesian regression Bishop uses a prior

p(w) = N(w|m0, S0)

and a likelihood function

p(t|w) =
N∏

n=1

N(tn|wT φ(xn), β−1)

He then shows that posterior distribution is given by

p(w|t) = N(w|mN , SN)

mN = SN(S−1
0 m0 + βφT t)

S−1
N = S−1

0 + βφT φ

If S0 = α−1I then
mN = SN(αm0 + βφT t)

S−1
N = αI + βφT φ

As α → 0S−1
N → βφT φ

SN → β−1(φT φ)−1

mN → β−1(φT φ)−1βφT t

mN = (φT φ)−1φT t



Table 1: Error Values

Polynomial degree Squared loss as given by Equation 3.12
0 4.6633
1 4.6587
2 3.6222
3 0.8091
4 0.6104
5 0.3523
6 0.3389
7 0.2426
8 0.2426
9 0.2365

Ans 3
a The plot of the polynomials of various degrees is attached in this pdf. The sum of
half the squared loss as given by equation 3.12 are given in the table.

b Once we randomly select half the data as the training and the remaining data as
testset data, the training set error decreases monotonically as the degree k increases.
Comparing it to the previous part there is a slight improvement in the average error.
This may be due to the fact as the number of the points and degrees converge the
polynomial is better able to fit the points. The test set error first decreases and hits
lowest at around degree 3 and then increases with increase in the degree suggesting
that there is overfitting beyond degree 3

c Lamda values above zero cause the weights especially of the high powers of x
to be much smaller reducing the risk of overfitting. The training set errors are larger
but testing set errors are reduced overall.
Matlab program for plotting the polynomials of various degrees and computing the
errors is also attached in this document.





Ans 4
Equation 3.30 which is the constraint can be written as

M∑
j=1

|wj|q − η ≤ 0

Now adding half of the above equation to the error equation 3.12 using the langrange
method we have

L =
1

2

N∑
n=1

{tn − wT φ(xn)}2 +
λ

2
(

M∑
j=1

|wj|q − η)

Now the above equation and the regularized error function 3.29 have the same form
in terms of w. Hence minimizing 3.29 is equivalent to minimizing the 3.12 subject to



constraint 3.30. Minimizing the above equation and using E.9 , E.10 and E.11 we get
the value of η as

η =
M∑

j=1

|wj|q

Ans 5
Using y(x, w) = wT φ(x) , p(t|x, w, β) = N(t|y(x, w), β−1) and p(w|t) = N(w|mN , SN)
we can write equation 3.57

p(t|t, α, β) =
∫

p(t|w, β)p(w|t, α, β)dw

as
p(t|t, α, β) =

∫
N(t|φ(x)T w, β−1)N(w|mN , SN)dw

Using equation 2.113 p(x) = N(x|µ, Λ−1) and equation 2.114 p(y|x) = N(y|Ax +
b, L−1) with posterior result 2.115 p(y) = N(y|Aµ + b, L−1 + AΛ−1AT ) Now our first
factor in the integrand is the likelihood and the second factor is the prior. Comparing
the results we get the result p(t|x, t, α, β) = N(t|mT

Nφ(x), σ2
N(x)) where the variance

is given by

σ2
N(x) =

1

β
+ φ(x)T SNφ(x)


