
CS645 Homework Solutions, Week 11
Chapter 4, PRML

1. Provide some details to get 4.68.

Solution:
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1. Provide some details to get to 4.68.  
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Assuming that class conditionals are Gaussian we have:  
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The term in the exponential is equivalent to:  
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Plugging into 4.62, the constants in front will cancel, giving:  
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Note that the second order terms involving x cancel out in the division.  



Therefore, )(ln
2
1)( 11

kkkk
T

k Cpuuuxxa +Σ−Σ= −−  

We can define additional terms so that:  
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Which is 4.68.  
 
 
2. Question 4.5 PRML  
Making use of 4.20, 4.23, and 4.24 show that the Fisher criterion (4.25) can be written in 
the form of 4.26  
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In the last part we can pull out the weight vectors and substitute in equations for SB and 
SW so that:  
 
 

2. PRML 4.5.

Solution:

Anurag Katiyar csid:anurag
Answers to problems for Week 11
Ans 1
Substituting this problem by Problem 4.12 in the Bishop book
Verify relation 4.88 for the derivative of the logistic sigmoid function defined by rela-
tion 4.59

σ(a) =
1

1 + exp(−a)

Differentiating the above equation 4.59 with respect to a we have

dσ

da
=

exp(−a)

(1 + exp(−a))2

where we have used the identity that d
dx

1
x

= −1
x2

= σ(a)

[
exp(−a)

1 + exp(−a)

]

Rearranging terms again we have

= σ(a)

[
1 + exp(−a)

1 + exp(−a)
− 1

1 + exp(−a)

]

= σ(a)(1 − σ(a))

which is what we wanted to prove.
Ans 2

J(w) =
(m2 − m1)

2

s2
1 + s2

2

Expanding this above equation by using m2 − m1 = wT(m2 −m1) and yn = wTxn

wT(m2 −m1)w
T(m2 −m1)∑

nεC1
(wTxn −wTm1)2 +

∑
nεC2

(wTxn −wTm2)2

wT(m2 −m1)w
T(m2 −m1)∑

nεC1
wT(xn −m1)wT(xn −m1) +

∑
nεC2

wT(xn −m2)wT(xn −m2)

Using the fact that for matrices (AB)T = BT AT and rearranging we have

wT(m2 −m1)(m2 −m1)
Tw∑

nεC1
wT(xn −m1)(xn −m1)Tw +

∑
nεC2

wT(xn −m2)(xn −m2)Tw

J(w) =
wTSBw

wTSww

where
SB = (m2 −m1)(m2 −m1)

T

and
Sw =

∑
nεC1

(xn −m1)(xn −m1)
T +

∑
nεC2

(xn −m2)(xn −m2)
T

Ans 3
At the equation boundary the posterior probabilities will be the same i.e.

P (C1|x) = P (C2|x)

Also there logs will be the same i.e.

ln P (C1|x) = ln P (C2|x)

Now the log of the posterior is equal to the sum of the logs of the prior hence we have
the equation

ln |Σk1|−1/2
[
−1

2
(x − µk1)

T Σ−1
k1 (x − µk1)

]
= ln |Σk2|−1/2

[
−1

2
(x − µk2)

T Σ−1
k2 (x − µk2)

]
If we solve the above equation we will get a quadratic equation in x
Ans 4
The problem is classification i.e. given an input object classifying it as belonging to
one of k classes. I am attaching a jpeg image of the slide that I have prepared in this
document (May have to see the next couple of pages in the document).

Ans 5
The matlab program has been subbmitted. After calculating w, S−1

w and m2 −m1

and then building the Fischer linear discriminant we project the training data to 1
dimension. The histogram of the projected face and non face data is attached with
this document. A promising cutoff for classification is −20. After running the same
analysis on the test data we found that it classifies all the face test data (13 of them)
properly. It also classifies (10 out of 13) non face data properly. Perhaps if we have
chosen a more accurate value for the cutoff i.e. something other than −20.0 we would
have got more accurate results for the test data.



3. Consider the situation in 4.2.1 where the covariances are not the same, but
there are only two classes. Derive an equation for the decision boundary. (As
suggested by the text, and figure 4.11, the form of the equation should be
quadratic).

Solution:
CSc 645 Homework Problems: Week 11 Joseph Schlecht

3. Suppose that the covariance matrices are not the same for the case of continuous
inputs modeled as Gaussians in the 2-class generative model for classification. Then
the equation for decision boundary can be found by determining the argument to the
logistic function a as follows

a = ln
P (x|C1)P (C1)
P (x|C2)P (C2)

= lnP (x|C1)− lnP (x|C2) + ln
P (C1)
P (C2)

=
1
2

(x− µ2)TΣ−1
2 (x− µ2)− 1

2
(x− µ1)TΣ−1

1 (x− µ1) + ln
P (C1)
P (C2)

=
1
2

[
xTΣ−1

2 x− 2µT
2 Σ−1

2 x + µT
2 Σ−1

2 µ2 − xTΣ−1
1 x− 2µT

1 Σ−1
1 x + µT

1 Σ−1
1 µ1

]
+ ln

P (C1)
P (C2)

=
1
2
xT(Σ−1

2 −Σ−1
1 )x− xT(Σ−1

2 µ2 −Σ−1
1 µ1) +

1
2
µT

2 Σ−1
2 µ2 +

1
2
µT

1 Σ−1
1 µ1 + ln

P (C1)
P (C2)

Let

S = Σ−1
2 −Σ−1

1

w = Σ−1
2 µ2 −Σ−1

1 µ1

w0 =
1
2
µT

2 Σ−1
2 µ2 +

1
2
µT

1 Σ−1
1 µ1 + ln

P (C1)
P (C2)

Then the decision function for class 1 (posterior probability) is given by

σ(xTSx− xTw + w0).

The decision function for class 2 is similarly derived.
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4. The chapter considers several ways to approach the same problem (what are
they?). Suppose you were the presenter this week, and wanted to make a figure
or chart that lists the most interesting ones and organizes them in some fashion,
and notes the similarities, differences, and relationships among them. Try your
hand at making such a chart or picture.

Solution: Consider the following illustrations:

where

V = −1
2
(Σ−1

1 −Σ−1
2 )

w = Σ−1
1 µ1 −Σ−1

2 µ2

w0 = −1
2
µT

1 Σ−1
1 µ1 +

1
2
µT

2 Σ−1
2 µ2 + ln

p(C1)
p(C2)

,

which is a quadratic function of x, as expected.

4. The problem that this chapter amis to solve is to be able to separate
data into classes, such that future data can also be placed in one of
these classes (as opposed to, say, K-means, which only classifies the
current data). There are, in my view, five main approaches discussed
in the book, which I summarize in the following chart.

Method Type Assumptions Multiple Classes Outliers
Least Squares Deterministic Error measure Yes Bad

Fischer Deterministic - Yes Good
Perceptron Deterministic - No Good
Generative Probabilistic Likelihood form Yes Good

Discriminative Probabilistic - Yes Good

5. I did this program in Mathematica, and the histogram is in the file
“hist.png”. I used the result from the book to obtain w (which I then
normalized). If we look at the histogram, a good threshold seems to
be y0 = −20, which is what I chose. With this threshold, I classified
the pictures in the test data and it classified everything correctly (all
the faces as faces and the no-faces as no-faces).

2



...or if you prefer, this more colorful solution:



5. The data files (from assignment three) are made from images of faces and non-
faces as follows. The images were converted to black and white and divided
into a 7 by 7 grid, and each block was averaged to produce 49 numbers for each
image, which are recorded in the rows of the above files.

This is clearly not a very intelligent way to extract features for face detection,
but suffices for experimentation.

Recall that in assignment three you build a Naive-Bayes classifier from the data
on the assumption that the conditional densities are Gaussian.

For this assignment, try using the Fischer Linear Discriminant method to project
the training data onto a 1D space. Plot a historgram of the projected face and
non-face data. Is there a promising cutoff for classification? Apply the same
transform to the test data, and record how well your classifier works.

Solution:CSc 645 Homework Problems: Week 11 Joseph Schlecht

5. I trained the fisher discriminant model with the training face data and plotted the
unscaled discriminant for each of the 100 face and 100 non-face points. Figure 1
shows this plot. It is pretty clear from the plot that there is a nice value for w that
separates the two sets. It is not a histogram, but I thought this plot was very nice in
illustrating the division in the two sets. I choosew0 = −0.0291 as the dividing value.
Using this value can correctly discriminate between all the training data.

I used the value of w0 to try and discriminate between the face and non-face test
data. I was surprised that the accuracy was perfect—I could correctly classify face or
non-face for all 26 samples in the test set.
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Figure 1: Plot of the fisher discriminate for the training data in the face and non-face sets.
The x-axis represents the index of 100 points in each of the sets and the y-axis is the w.
The red circles are the face points and the green crosses are the non-faces. Clearly there is
a nice discriminate around w0 = −0.25.
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