
Estimating Graph Parameters using Graph Grammars

Sourav Mukherjee sourav1@umbc.edu
Tim Oates oates@cs.umbc.edu

Department of Computer Science and Electrical Engineering,
University of Maryland Baltimore County,
1000 Hilltop Circle, Baltimore 21250, Maryland, USA.

Keywords: graph grammars, grammar induction, graph mining, relational data mining

Abstract

Stochastic graph grammars are probabilistic
models suitable for modeling relation data,
complex organic molecules, social networks,
and various other data distributions. In
this paper, we demonstrate that such gram-
mars can be used to reveal useful informa-
tion about the underlying distribution. In
particular, we demonstrate techniques for es-
timating the expected number of nodes, the
expected number of edges, and the expected
value of the average node degree, in a graph
sampled from the distribution. These esti-
mation techniques use the underlying gram-
mar, which is assumed to be known, and
hence do not require sampling. Experimen-
tal results indicate that our estimation tech-
niques are reasonably accurate. Further, we
present a characterization of grammars that
can generate graphs that are not connected.
Thus, this paper shows that once a stochastic
graph grammar for a distribution of graphs
has been learned, it can be used to answer
several interesting and useful queries about
the distribution itself, without requiring sam-
pling.

1. Introduction

Stochastic graph grammars have recently emerged as
viable probabilistic models for various types of data,
such as relational data, organic molecules, social net-
works and so on. Such grammars compactly repre-
sent probability distributions over graphs. Stochastic

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

graph grammars have a hierarchical, recursive struc-
ture that is amenable to interpretation by domain ex-
perts. Further, they can be used to determine the like-
lihood of generating a particular sample (inference),
and also for the task of generating new samples from
the distribution(sampling). In this paper, however, we
show that the utility of graph grammars extends be-
yond inference and sampling, and that a graph gram-
mar can be used to extract useful information about
the distribution it represents. Given the stochastic
grammar for a distribution of graphs, we present tech-
niques that take the grammar as input, and find an-
swers to the following interesting questions about the
underlying distribution:

• What is the expected number of nodes in a graph
sampled from this distribution?

• What is the expected number of edges?

• What is the expected degree of a node?

• What can we infer about the connectivity of a
graph sampled from this distribution?

We show that these questions can be answered using
a stochastic graph grammar, without resorting to any
sampling process.

The rest of the paper is organized as follows. Section
2 presents motivation for our work. Section 3 formally
defines the terms and concepts we shall use through-
out this paper. Section 4 presents a brief survey of
related work, and highlights the contributions of this
paper. In Section 5, we investigate the answers to the
questions posed above. Section 6 gives experimental
results. Finally, Section 7 concludes and points out
future directions.

Estimating Graph Parameters using Graph Grammars

2. Motivation

In this section, we provide a few real life scenarios
where it is important to be able to extract useful in-
formation from distributions of graphs. We look at
two application domains: chemical databases and so-
cial networks.

In bioinformatics, the properties of large and complex
organic molecules are often studied. These molecules
can be represented as graphs, where labeled vertices
denote atoms and an edge represents the presence
of a chemical bond between two atoms (Dehaspe
et al., 1998). Organic molecules often have heirarchical
structure, in which groups of atoms, called functional
groups, behave as a single entity. A functional group,
in turn, can be composed of smaller functional groups.
The recursive, hierarchical structure of a graph gram-
mar makes it ideal for describing families of such or-
ganic molecules. Given a family of organic molecules
(e.g. proteins), it might be interesting to investigate
certain properties of that class of molecules, such as,
the expected size of a molecule belonging to that class.
In this paper, we show that such parameters can be
evaluated if a graph grammar for the class of molecules
is known.

In recent years, social networks such as Facebook,
Orkut, and LinkedIn have become immensely popular.
Social networks can be represented as graphs, where
nodes represent members of the network, and edges
represent acquaintance between members. These net-
works usually have hierarchical and recursive struc-
tures. Given a specific class of social networks
(e.g. university communities), we might be interested
in knowing how many friends a member is expected
to have on average, how many members are expected
to be in the network, whether it is possible for the
network to have isolated pockets, and so on. In this
paper, we show that these questions can be answered
if the underlying graph grammar is known.

In the next section, we formally define the concepts
related to stochastic graph grammars, that will aid in
our presentation.

3. Preliminaries

In this section, we review the basic definitions and con-
cepts pertaining to stochastic graph grammars. The
presentation will follow that given in (Oates et al.,
2003). Throughout this discussion, we will use the
notation G = (V, E) to refer to a graph with V being
the set of vertices, and E being the set of edges.

Definition 3.1. Let G = (V, E) be a graph. A hyper-

edge is an ordered subset of its vertices V . Alterna-
tively, a hyperedge of degree n can be thought of as a
mapping H : {1, 2, ..., n} → V .

A hypergraph is a graph that can, in addition to edges,
also have hyperedges.

Definition 3.2. A (hyperedge replacement) stochas-
tic context-free graph grammar (SCFGG) is defined
as a tuple (S, N, T, P, p) where:

• N is the set of non-terminal symbols,

• T is the set of terminal symbols, disjoint from N,

• S ∈ N is a special non-terminal called the start
symbol,

• P is a set of productions,

• p is a probability function defined on the set of
productions, such that the sum of the probabili-
ties of all productions with the same left hand side
equals 1.

In a hyperedge replacement SCFGG, terminals are
used to denote graphs without hyperedges, while non-
terminals are used to label hyperedges. A production is
an ordered pair (H, α), written as H → α, where H is
a non-terminal and α is a hypergraph.

A SCFGG can be viewed as a generative model: we
start with the start symbol S, and at each step we re-
place any non-terminal H with a graph α such that
there is a production H → α. This process is con-
tinued until we arrive at a graph that has no non-
terminal symbols. When a hyperedge H in a graph G
is replaced using the production H → α, G is called
the host graph, and α is called the subgraph. Finally,
the probability of such a derivation is defined as the
product of the probabilities of its productions.

The term embedding rules is used to describe how the
subgraph is placed in the host-graph while replacing
a non-terminal. In general, embedding rules for HR
grammars tend to be much simpler than those for
node-replacement grammars. Let the host-graph G
have a hyperedge H of degree n. Then the vertices
constituting H must be labeled as 1′, 2′, ..., n′. Also,
for every production H → α, α must have n vertices
labeled 1, 2, ..., n. When H is replaced by α, node j
in the subgraph must be glued to node j′ in the host-
graph. This is the only embedding rule this paper will
assume.

As an illustrative example, we consider the simple
grammar shown in Figure 1, which is a grammar for all

Estimating Graph Parameters using Graph Grammars

1'
1'

2'
2'

X

X

S

1'
1

2'X
2

X

1 2X

Figure 1. A grammar for generating simple cycles. Note
that non terminal hyperedges are labeled with rectangles,
with the non-terminal symbols written inside them. Also,
the vertices of the hyperedge are enumerated using primed
integers: 1’, 2’. Finally, the subgraphs have vertices la-
beled 1,2 indicating how they will be embedded in the
host-graph.

simple cycles. We shall use this grammar to illustrate
our estimation techniques in later sections.

In the next section, we briefly survey work done in
graph grammars and related areas.

4. Related Work

In this section, we review the literature relevant to
stochastic graph grammars.

Since a graph depicts a set with a relation defined on
it, stochastic graph grammars are important as tools in
relational data mining. In recent years, the problem of
mining information from relational data by construct-
ing probabilistic models for the underlying distribution
has received a lot of attention. Markov Logic Net-
works (MLN) (Richardson & Domingos, 2006) have
emerged as a popular approach to the problem. Our
approach, involving stochastic graph grammars, differs
from MLNs in the following respects:

1. As mentioned in (Richardson & Domingos, 2006),
an MLN can be constructed to represent any dis-
tribution over relational data, as long as the do-
main is finite. Since the schema of such data is
also fixed, the probability distribution is necessar-
ily over a finite set. Although the authors com-
ment that it might be possible to extend MLNs
to infinite domains, their work entirely deals with
MLNs in finite domains. On the other hand, even
simple stochastic graph grammars (such as the
one in Figure 1) can represent infinite families of
graphs.

2. Inference using MLNs typically involves finding
the probability that a certain first order logic
(FOL) formula is true, given that another FOL
formula is also true (Richardson & Domingos,
2006). In the context of stochastic graph gram-
mars, inference conventionally means computing
the probability that a graph was generated by a
given grammar. However, in this paper, we show
that we can use a stochastic graph grammar to
infer useful parameters of the distribution itself.

3. An MLN, together with a set of constants, de-
fines a Markov network (Richardson & Domingos,
2006), whose size increases exponentially with the
number of constants. Stochastic graph grammars,
on the other hand, tend to be compact models
for the underlying distribution, which do not have
such combinatorial explosion in size.

We now turn to the problem of learning grammars
from training data. In the context of string gram-
mars, Lari and Young (Lari & Young, 1990) have pre-
sented an algorithm for learning the production prob-
abilities, given the productions and training examples.
The problem of learning the structure (the produc-
tions) has also been addressed, both for hidden Markov
models (HMMs) (Bell et al., 1990; Ron et al., 1994;
Stolcke & Omohundro, 1994) that can learn only reg-
ular grammars, and for the more general context free
grammars (Cook et al., 1976; Stolcke & Omohundro,
1994).

Now we turn to the problem of learning graph gram-
mars from training data. The theory of graph gram-
mars, along with several applications, has been sur-
veyed in (Rozenberg, 1997). Oates et al. (Oates et al.,
2003) have proposed an algorithm, PEGG (Parame-
ter Estimation in Graph Grammars), for estimating
the production probabilities of a stochastic context
free graph grammar, given its productions. Algo-
rithms for learning the structure of graph grammars
include SubdueGL (Jonyer et al.,) for deterministic
graph grammars, and its extension to stochastic gram-
mars presented in (Doshi et al., 2002). Both these al-
gorithms are for node-replacement graph grammars.
One of the early approaches to learning determinis-
tic hyperedge-replacement (HR) graph grammars was
presented by Jeltsch and Kerowski (Jeltsch & Kre-
owski, 1993). However, to the best of our knowledge,
no satisfactory solution exists to the problem of learn-
ing stochastic HR graph grammars. Although one of
our research goals is to formulate such an algorithm,
that is not the concern of this paper.

In (Stolcke & Segal, 1994), Stolcke et al. have demon-

Estimating Graph Parameters using Graph Grammars

strated that a stochastic string grammar may be used
to extract useful information about the underlying
distribution of strings. In this paper, we adopt a
similar approach, and demonstrate that the utility of
stochastic graph grammars extends beyond inference
and sampling. We show that it is possible to use a
stochastic graph grammar to unravel useful and inter-
esting information about the underlying distribution
of graphs. In particular, we show that:

1. Given a graph grammar, we can estimate the ex-
pected number of vertices and edges that a graph
generated from any non-terminal in that grammar
will have.

2. Using the above, we can estimate the average de-
gree of a vertex.

3. Given a graph grammar, we can infer whether
that grammar can generate graphs that are not
connected.

In the next section, we shall demonstrate how these
estimations can be made based on a stochastic graph
grammar.

5. Estimating Graph Parameters

In this section, we present techniques for estimating
the expected number of nodes and edges in a graph
sampled from a distribution given the grammar for
the distribution. We also present a characterization of
graph grammars that can generate graphs that are not
connected (in this paper, we shall refer to such graphs
as unconnected graphs).

Before presenting these techniques, we define some no-
tation that aid our presentation.

5.1. Notation

Given a grammar G, let Z be a nonterminal in
the grammar, such that there are NZ production
rules with Z on the left hand side, with probabilities
pZ,1, pZ,2, ..., pZ,NZ , satisfying

∑NZ

j=1 pZ,j = 1. Let the
jth such production be of the form Z → αj where αj is
a graph with vZ,j vertices, aZ,j edges, and hZ,j hyper-
edges, labeled Zj,1, Zj,2, ..., Zj,hZ,j . Note that these
non-terminals do not have to be all distinct; they may
even be the same as Z. Finally, let DZ denote the
degree of the non-terminal Z. We will express our es-
timates in terms of these symbols.

We now consider the problem of estimating the ex-
pected number of nodes in any graph generated by a
grammar.

5.2. Expected Number of Nodes

For any non-terminal Z, let nZ represent the expected
number of nodes in any graph obtained by expanding
Z.

As an illustrative example, we refer to the simple
grammar shown in Figure 1, which is a grammar for
all simple cycles.

Let us assume that the three productions have proba-
bilities given by pS , pX,1 and pX,2 = 1 − pX,1 respec-
tively.

Given the grammar in Figure 1, we can make the fol-
lowing observations (explained later):

nS = pS(2 + (nX − 2) + (nX − 2)) (1)
= pS(2nX − 2) (2)

nX = pX,1(3 + nX − 2) + pX,2(2) (3)
= pX,1(nX + 1) + pX,2(2) (4)

To understand how these equations arise, let us con-
sider Equation 3. Non-terminal X in Figure 1 can
expand in two ways, corresponding to the second and
the third productions in the grammar. The probabil-
ity terms pX,1 and pX,2 in Equation 3 correspond to
these two scenarios. If X expands according to the
third production in Figure 1, then the resulting graph
will have 2 nodes; this explains the term pX,2(2) in the
equation. However, if X expands according to the sec-
ond production in Equation 1, then the resulting graph
will have 3 nodes, plus the nodes arising due to the ex-
pansion of the embedded X in the right hand side of
the production. When the embedded X is expanded,
two nodes in the resulting subgraph (labeled 1 and 2)
will be glued to the two nodes labeled 1’ and 2’ in the
host-graph. This explains the term pX,1(3 + nX − 2)
in Equation 3. We can similarly explain Equation 1.

To generalize this result to arbitrary grammars, refer
to the notation defined in Section 5.1. The equation
for nZ , the expected number of nodes in any graph
obtained by expanding Z, is given by:

nZ =
NZ∑

j=1

pZ,j(vZ,j +
hZ,j∑

k=1

(nZj,k
− DZj,k

)) (5)

To see how Equations 1 and 3 follow from Equation
5,consider the non-terminal S. The number of pro-
ductions with S on the left-hand side is NS = 1, with
probability pS,1 = pS = 1. In the right-hand side of

Estimating Graph Parameters using Graph Grammars

this production, there are vS,1 = 2 nodes, and hS,1 = 2
hyperedges, viz. S1,1 = X, S1,2 = X . Inserting these
values into Equation 5 yeilds:

nS = pS(2 + (nX − 2) + (nX − 2))

which is exactly Equation 1.

For X, the number of productions is NX = 2 with
probabilities pX,1, pX,2. The first production has
vX,1 = 3 nodes and hX,1 = 1 hyperedge, namely
X1,1 = X . The second production has vX,2 = 2 nodes
and no hyperedge, hX,2 = 0. Setting these values into
Equation 5 yeilds:

nX = pX,1(3 + nX − 2) + pX,2(2)

which is exactly Equation 3.

Thus we see that for each non-terminal Z in the gram-
mar, we will have a single linear equation, leading to
a system to linear-equations with the same number of
equations as the number of non-terminals.

In the next section, we use the same approach to esti-
mate the expected number of edges in graphs obtained
by expanding any non-terminal Z.

5.3. Expected Number of Edges

In this section, we develop a system of linear equations
for estimating the expected number of edges in a graph
obtained from any non-terminal in the grammar. As
in the case of the expected number of nodes, we first
explain the technique using the example grammar in
Figure 1. Then, we generalize the idea to arbitrary
graph grammars. We define the following notation: for
any non-terminal Z, let eZ be the expected number of
edges in any graph obtained by expanding Z.

The problem of estimating the expected number of
edges is different from that of estimating the expected
number of nodes, in that unlike nodes, edges are not
glued together when a subgraph is embedded inside a
host-graph. Thus, we get the following set of equations
for the grammar in Figure 1:

eS = pS(eX + eX) (6)
= pS(2eX) (7)

eX = pX,1(1 + eX) + pX,2(1) (8)

To understand how these equations arise, consider
Equation 8. The non-terminal X can expand in two

different ways, as seen from Figure 1. If it expands ac-
cording to the third producion, the number of edges is
1. This explains the pX,2(1) term in Equation 8. How-
ever, if it expands according to the second production,
then the resulting graph has one edge, plus the num-
ber of edges obtained by expanding the embedded X .
This explains the pX,1(1 + eX) term in Equation 8.
Equation 7 may be explained similarly.

Now, we generalize this idea to arbitrary graph gram-
mars. Referring to the symbols defined in Section 5.1,
the equation for eZ , the expected number of edges in
any graph obtained by expanding Z, is given by:

eZ =
NZ∑

j=1

pZ,j(aZ,j +
hZ,j∑

k=1

eZj,k
) (9)

Once again, we see that for each non-terminal Z in the
grammar, we will have a single linear equation, leading
to a system to linear-equations with the same number
of equations as the number of non-terminals.

In the next section, we will show how to use these
results, to estimate the average degree of any node, in
a graph obtained from any non-terminal in the graph.

5.4. Expected Degree of a Node

In this section, we present two techniques for estimat-
ing the average node degree of a graph generated from
a given grammar. The first technique, which we call
the Näıve Degree Estimator, is simpler to implement
and understand; the second method, which we call the
Linear Degree Estimator is slightly more involved, but
much more accurate. We present an emperical com-
parison of these two techniques later.

5.4.1. Näıve Degree Estimator

The average degree d̄ of a node in a graph G = (V, E)
is defined as

d̄ =
1
|V |

∑

v∈V

d(v) (10)

We also know that (West, 2001)

d̄ =
2|E|
|V | (11)

We will refer to this result as the Handshaking Lemma.

Estimating Graph Parameters using Graph Grammars

Given a non-terminal Z, let d̄Z denote the expected
value of the average degree of a node, of any graph
obtained from Z. Then, we can estimate d̄Z as:

d̄Z ≈ 2eZ

nZ
(12)

Of course, Equation 12 is only an estimate. The esti-
mation is exact only if the number of nodes and the
number of edges are independant random variables,
which, in general, is not the case. This fact limits the
accuracy of the Näıve Degree Estimator technique, as
reflected in the experimental results. We next present
the second, more involved, degree estimation tech-
nique, which also turns out to be a more accurate one.

5.4.2. Linear Degree Estimator

In this section, we introduce a technique that reduces
the degree estimation problem to solving a linear sys-
tem of equations, analogous to those developed for
estimating the expected node and edge counts. Let
G = (V, E) be a graph, and let {V1, ..., Vm} be a par-
tition of the vertices V . Further, let for 1 ≤ i ≤ m, let
Gi be the subgraph of G induced by Vi. Finally, for
any graph X , let d̄(X) denote the average degree of a
node in X . It is easy to see that:

d̄(G) =
∑m

i=1 |V (Gi)|d̄(Gi)|
|V (G)| (13)

We now make the following observations:

1. For a randomly generated graph, we may not
know the node counts |V (Gi)| in advance. How-
ever, we can estimate these counts by the expected
node counts, using the results given in Section 5.2.

2. If we consider the process of deriving a graph from
a grammar, the subgraphs obtained by expanding
the non-terminal hyperedges provide a decompo-
sition of the vertex set, except that the decom-
position is not pairwise disjoint. In particular,
there may be nodes that belong to more than one
such subgraph. However, the total degree of such
a node would be the sum of contributions from
each of the subgraphs the node belongs to.

We modify Equation 13, in view of the above observa-
tions, to arrive at the following result.

Let, for a non-terminal Z, d̄Z indicate the expected
average node degree of any graph derived from the

non-terminal symbol Z. Recall that the average is
computed over all nodes in a graph, and the expecta-
tion is computed over the distribution of the graphs.
Once again, we refer to the symbols defined in Section
5.1.

The expected number of nodes in the graph αj is given
by

nZ,j =
hZ,j∑

k=1

(nZj,k
− DZj,k

) + vZ,j (14)

Let us number the vertices in αj as 1, 2, ..., vZ,j and let
for vertex l(1 ≤ l ≤ vZ,j), al be the number of terminal
edges incident on that vertex. Then the expression for
the expected average number of nodes is given by:

d̄Z −
NZ∑

j=1

hZ,j∑

k=1

pZ,j

nZ,j
d̄Zj,k

=
Nz∑

j=1

vZ,j∑

l=1

pZ,j

nZ,j
al (15)

Thus, we get a linear equation for every non-terminal
Z in the grammar. By solving this linear system, we
can arrive at an estimate of the expected average node
degree.

In the next section, we characterize grammars that can
produce unconnected graphs.

5.5. Connectivity

In this section, we present conditions a grammar must
satisfy in order to generate an unconnected graph (nec-
essary conditions), and also conditions that guarantee
that a grammar will generate an unconnected graph
(sufficient conditions). We begin with a definition.

Definition 5.1. Consider a hyper-graph (a graph that
has edges as well as non-terminal hyperedges) g. The
meta-graph induced by g, denoted by M(g), is a graph
obtained by adding a new node X for every hyperedge
X in g; further, if n is any node in g, then there is an
edge between X and n in M(g) if and only if n is a
vertex in the hyperedge X in g.

Note that if g has no hyperedges, then g = M(g). We
now state our theorem on connectivity. 1

Theorem 5.1. Let G be a graph grammar. A neces-
sary condition for G to be able to generate an uncon-
nected graph is that G must have a production X → α,
where M(α) is unconnected. Further, G must gener-
ate an unconnected graph if either G has a production
of the form S → α where M(α) is unconneceted, or,

1Proof is omitted here due to lack of space.

Estimating Graph Parameters using Graph Grammars

1 2S

1'
1

S
2
2'

S
2'
1'

S

S
1'
1
1'

S

S

2'
2
2'

Figure 2. The series-parallel grammar.

G has a production of the form X → α where M(α) is
unconnected, and at least one connected component in
M(α) has no gluing nodes in it.

In the next section, we present experimental results to
validate our theoretical formulations.

6. Experimental Results

In this section, we present experimental results that
validate our theoretical formulation. We have used
two grammars, refered to as series-parallel (see Fig-
ure 2) and anbncn (see Figure 3). The probabilities
of the productions are set as follows. For the series-
parallel grammar (Figure 2) ,we let the probabilities
of the first production be pterminal, and those of the
other two productions each be (1 − pterminal)/2. We
vary pterminal from 0.60 to 1.0. For the anbncn gram-
mar (Figure 3), let the probabilities of the second and
the fourth productions each be pterminal , and let the
probabilities of the first and the third productions each
be 1 − pterminal. We vary pterminal from 0.60 to 1.0.

For each grammar and for each setting of produc-
tion probabilities, we first estimate the expected num-
ber of nodes, the expected number of edges, and the
expected average node degree, using the above tech-
niques. Then, we generate 10, 000 independant sam-
ples from each grammar and compute the sample
means of node count, edge count, and average node
degree.

The results are presented in Table 1 for the series-
parallel grammar, and in Table 2 for the anbncn gram-
mar.

Remarks The results in Table 1 and Table 2 indi-
cate that the estimates obtained using our technique
are fairly accurate. The tables also show that as
pterminal increases towards 1.0, the estimates get pro-
gressively closer to the corresponding sample means.
This can be explained by the fact that when terminal
productions have a higher probability, longer deriva-

A

1'

4'
2

3'

2'

1

a c

b

S

S 1 2
a b c

A

A

2'

1'

4'
4

3'

2
b

1
a

3
c

A

1 2
a b

3 4
c

Figure 3. The grammar anbncn. Note that this grammar
contains directed labeled terminal edges.

tions become less probable, and hence, the variances
in the parameters being measured (such as the number
of nodes in a graph) become smaller.

Another observation we may make from the tables is
that the Linear Degree Estimator is much more ac-
curate than the Näıve Degree Estimator, as had been
predicted in Section 5.4.1.

7. Conclusion

Graph grammars are useful probabilistic models for
distributions over graphs because they are compact,
hierarchical, and amenable to interpretation by do-
main experts. However, in this paper, we have demon-
strated that the utility of graph grammars goes beyond
elucidation of structure and generation of samples. We
have presented grammar-based techniques to estimate
the expected number of nodes, the expected number of
edges, and the expected average node degree in a graph
generated by the grammar. We have also presented a
characterization of grammars that can produce graphs
that are not connected.

Future directions include exploring the characteriza-
tion of grammars the generate planar graphs, and ap-
plying these results to real-life domains such as re-
lational databases, organic molecules, and social net-
works.

Estimating Graph Parameters using Graph Grammars

Table 1. Experimental results for the Series-Parallel grammar. Estimates using our algorithm are compared against
sample means from a set of 10,000 samples. The symbols nS , eS , d̄NAIVE

S , d̄Linear
S stand for the expected number of nodes,

the expected number of edges, the expected average node degree by the Näıve estimator, and the expected average node
degree by the Linear degree estimator, respectively.

Terminal Production Probability nS Sample Mean eS Sample Mean d̄Naive
S Sample Mean d̄Linear

S Sample Mean

0.60 2.99 2.9428 6.99 2.9869 4.6667 1.5572 1.3043 1.5607
0.65 2.5833 2.5932 4.5 2.2158 3.4839 1.4224 1.3067 1.4286
0.70 2.375 2.3768 3.25 1.7764 2.7368 1.3351 1.2706 1.3295
0.75 2.25 2.2562 2.5 1.5042 2.22 1.2465 1.2209 1.2477
0.80 2.1667 2.1619 1.9999 1.337 1.8462 1.1799 1.1691 1.1814
0.85 2.1071 2.1049 1.6428 1.2152 1.1559 1.1263 1.12 1.1303
0.90 2.0625 2.0612 1.375 1.1261 1.3333 1.0778 1.0753 1.0761
0.95 2.0278 2.0269 1.1667 1.0559 1.1507 1.0354 1.0354 1.0354
1.00 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 2. Experimental results for the anbncn grammar. Estimates using our algorithm are compared against sample means
from a set of 10,000 samples. The symbols nS , eS, d̄NAIVE

S , d̄Linear
S stand for the expected number of nodes, the expected

number of edges, the expected average node degree by the Näıve estimator, and the expected average node degree by the
Linear degree estimator, respectively.

Terminal Production Probability nS Sample Mean eS Sample Mean d̄Naive
S Sample Mean d̄Linear

S Sample Mean

0.60 6 6.0073 5.6667 5.0214 1.8889 1.6046 1.5815 1.6017
0.65 5.6154 5.5882 5.1538 4.6305 1.8356 1.5873 1.5722 1.5885
0.70 5.2857 5.2807 4.7143 4.2609 1.7838 1.5730 1.5625 1.5724
0.75 5.0 4.9999 4.33 3.9855 1.733 1.5584 1.5525 1.5594
0.80 4.75 4.7131 4.0 3.756 1.6842 1.5470 1.5423 1.5426
0.85 4.5294 4.5523 3.7059 3.5265 1.6364 1.5354 1.5319 1.5349
0.90 4.3333 4.333 3.4444 3.3273 1.5897 1.5219 1.5213 1.5219
0.95 4.1579 4.153 3.2105 3.1485 1.5443 1.5116 1.5107 1.5099
1.0 4.0 4.0 3.0 3.0 1.5 1.5 1.5 1.5

References

Bell, T. C., Cleary, J. G., & Witten, I. H. (1990). Text
compression. Englewood Cliffs, NJ, USA: Prentice
Hall.

Cook, C. M., Rosenfeld, A., & Aronson, A. R. (1976).
Grammatical inference by hill climbing. infsci, 10,
59–80.

Dehaspe, L., Toivonen, H., & King, R. D. (1998).
Finding frequent substructures in chemical com-
pounds. KDD (pp. 30–36).

Doshi, S., Huang, F., & Oates, T. (2002). Inferring the
structure of graph grammar from data. Proceedings
of the International Conference on Knowledge Based
Computer Systems (KBCS).

Jeltsch, E., & Kreowski, H.-J. (1993). Grammatical
inference based on hyperedge replacement. Gram-
matical Inference: Theory, Applications and Alter-
natives; 1st International Colloquium (pp. 7/1–7/6).
The Institution of Electrical Engineers.

Jonyer, I., Holder, L. B., & Cook, D. J. MDL-based
context-free graph grammar induction. .

Lari, K., & Young, S. (1990). The estimation of
stochastic context-free grammars using the inside-
outside algorithm. Computer Speech and Language,
4, 35–36.

Oates, T., Doshi, S., & Huang, F. (2003). Estimat-
ing maximum likelihood parameters for stochastic
context-free graph grammars. Proceedings of the
13th International Conference on Inductive Logic
Programming (pp. 281–298). Springer-Verlag.

Richardson, M., & Domingos, P. (2006). Markov logic
networks. Machine Learning, 62, 107 – 136.

Ron, D., Singer, Y., & Tishby, N. (1994). The power
of amnesia. Advances in Neural Information Pro-
cessing Systems (pp. 176–183). Morgan Kaufmann
Publishers, Inc.

Rozenberg, G. (Ed.). (1997). Handbook of graph gram-
mars and computing by graph transformations, vol-
ume 1: Foundations. World Scientific.

Estimating Graph Parameters using Graph Grammars

Stolcke, A., & Omohundro, S. (1994). Inducing proba-
bilistic grammars by bayesian model merging. Pro-
ceedings of the Second International ICGI Collo-
qium on Grammatical Inference and Applications
(pp. 106–118). Berlin: Springer Verlag.

Stolcke, A., & Segal, J. (1994). Precise N-gram proba-
bilities from stochastic context-free grammars. ACL
(pp. 74–79).

West, D. B. (2001). Introduction to graph theory (2nd
edition). Upper Saddle River): (Prenctice Hall.

