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Markov Chain Monte Carlo Data Association

for Multiple-Target Tracking

Songhwai Oh, Stuart Russell, and Shankar Sastry

Abstract

This paper presents Markov chain Monte Carlo data association (MCMCDA) for solving data

association problems arising in multiple-target tracking in a cluttered environment. When the number of

targets is fixed, the single-scan version of MCMCDA approximates joint probabilistic data association

(JPDA). Although the exact computation of association probabilities in JPDA is NP-hard, we prove that

the single-scan MCMCDA algorithm provides a fully polynomial randomized approximation scheme for

JPDA. For general multiple-target tracking problems, in which unknown numbers of targets appear and

disappear at random times, we present a multi-scan MCMCDA algorithm that approximates the optimal

Bayesian filter. It exhibits remarkable performance compared to multiple hypothesis tracking (MHT)

under extreme conditions, such as a large number of targets in a dense environment, low detection

probabilities, and high false alarm rates.

I. I NTRODUCTION

Multiple-target tracking plays an important role in many areas of engineering such as surveil-

lance, computer vision, and signal processing [1], [2], [3]. Under the general setup, some

indistinguishable targets move continuously in a given region, typically independently according

to a known, Markovian process. Targets arise at random in space and time, persist for a random

length of time, and then cease to exist; the sequence of states that a target follows during its

lifetime is called atrack. The positions of moving targets are measured, either at random intervals

or, more typically, in periodicscansthat measure the positions of all targets simultaneously. The
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position measurements are noisy and occur with detection probability less than one, and there

is a noise background of spurious position reports,i.e., false alarms.

The essence of the multiple-target tracking problem is to find tracks from the noisy measure-

ments. Now, if the sequence of measurements associated with each target is known, multiple-

target tracking (at least under the assumption of independent motion) reduces to a set of state

estimation problems, which, for the purposes of this paper, we assume to be straightforward. Un-

fortunately, the association between measurements and targets is unknown. Thedata association

problem is to work out which measurements were generated by which targets; more precisely,

we require a partition of measurements such that each element of a partition is a collection of

measurements generated by a single target or clutter [4]. In the general case, uncertainty as to

the correct association is unavoidable.

Multiple-target tracking algorithms are often categorized according to the objective function

that they purport to optimize:

• Heuristic approaches typically involve no explicit objective function. For example, the

greedy nearest-neighbor filter (NNF) [1] processes the new measurements in some order

and associates each with the target whose predicted position is closest, thereby selecting

a single association after each scan. Although effective under benign conditions, the NNF

gives order-dependent results and breaks down under more difficult circumstances.

• Maximum a posteriori(MAP) approaches find the most probable association, given the

measurements made so far, and estimate tracks given this association.

• TheBayesianapproach generates optimal filtering predictions by summing over all possible

associations, weighted by their probabilities. Under certain distributional assumptions (e.g.,

linear–Gaussian models), the optimal Bayesian filter can be shown to minimize the mean

squared error in the track estimates. For this reason, approaches that sum over multiple

associations are sometimes calledminimum mean square error(MMSE) approaches.

Tracking algorithms can also be categorized by the way in which they process measurements:

• Single-scanalgorithms estimate the current states of targets based on their previously

computed tracks and the current scan of measurements.

• Multi-scan algorithms may revisit past scans when processing each new scan, and can

thereby revise previous association decisions in the light of new evidence.
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MAP approaches include the well-knownmultiple hypothesis tracking(MHT) algorithm [5].

MHT is a multi-scan tracking algorithm that maintains multiple hypotheses associating past

measurements with targets. When a new set of measurements arrives, a new set of hypotheses

is formed from each previous hypothesis. The algorithm returns a hypothesis with the highest

posterior as a solution. MHT is categorized as a “deferred logic” method [6] in which the decision

about forming a new track or removing an existing track is delayed until enough measurements

are collected. MHT is capable of initiating and terminating a varying number of tracks and is

suitable for autonomous surveillance applications. The main disadvantage of MHT in its pure

form is its computational complexity since the number of hypotheses grows exponentially over

time. Various heuristic methods have been developed to control this growth [5], [7], [8]; but these

methods are applied at the expense of sacrificing the MAP property. Other MAP approaches have

been tried besides MHT, including 0-1 integer programming [9] and multidimensional assignment

[6]. As the latter reference shows, the underlying MAP data association problem is NP-hard, so

we do not expect to find efficient, exact algorithms.

Exact Bayesian data association is even less tractable than the MAP computation. Several

“pseudo-Bayesian” methods have been proposed, of which the best-known is thejoint prob-

abilistic data association(JPDA) filter [1]. JPDA is a suboptimal single-scan approximation

to the optimal Bayesian filter; it can also be viewed as an assumed-density filter in which

the joint state estimate is always a single set of tracks for a “known” set of targets. At each

time step, instead of finding a single best association between measurements and tracks, JPDA

enumerates all possible associations and computes association probabilities{βjk}, whereβjk is

the probability thatj-th measurement extends thek-th track. Given an association, the state of a

target is estimated by a filtering algorithm and this conditional state estimate is weighted by the

association probability. Then the state of a target is estimated by summing over the weighted

conditional estimates. JPDA has proved very effective in cluttered environments compared with

NNF [1]. The exact calculation of association probabilities{βjk} in JPDA, which requires the

summation over all association event probabilities, is NP-hard [10] since the related problem of

finding the permanent of a matrix is #P-complete [11]. Some heuristic approaches to approximate

JPDA include a “cheap” JPDA algorithm [12], “suboptimal” JPDA [13] and “near-optimal” JPDA

[14]. In [15], a single-scan data association problem is considered and a leave-one-out heuristic

is developed to avoid the enumeration of all possible associations.
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The main contribution of this paper is the development of a real-time multiple-target tracking

method called Markov chain Monte Carlo data association (MCMCDA). Unlike MHT and JPDA,

MCMCDA is a true approximation scheme for the optimal Bayesian filter;i.e., when run with

unlimited resources, it converges to the Bayesian solution. As the name suggests, MCMCDA uses

Markov chain Monte Carlo (MCMC) sampling instead of summing over all possible associations.

MCMC was first used to solve data association problems by Pasulaet al. [16], [17], who showed

it to be effective for multi-camera traffic surveillance problems involving hundreds of vehicles.

More recently, in [18], MCMC was used to approximate the association probabilities in JPDA and

was shown to outperform Fitzgerald’s cheap JPDA.1 MCMCDA goes beyond these contributions

by incorporating missing measurements, false alarms and an ability to initiate and terminate

tracks, so that the algorithm can be applied to the full range of data association problems.

The paper has two main technical results. The first is a theorem showing that, when the number

of targets is fixed, single-scan MCMCDA is a fully polynomial randomized approximation

scheme for JPDA. More specifically, for anyε > 0 and any0 < η < .5, the algorithm finds “good

estimates” with probability at least1−η in time complexityO(ε−2 log η−1N(N log N+log(ε−1))),

whereN is the number of measurements per scan. (The precise meaning of good estimates is

defined in Section IV-C.) The theorem is based on the seminal work of Jerrum and Sinclair [20],

who designed an MCMC algorithm for approximating the permanent of a matrix and developed

new techniques for analyzing its rate of convergence. As mentioned above, the relationship

between JPDA and computing the permanent was identified by Collins and Uhlmann [10]; the

connection to the polynomial-time approximation theorems of Jerrum and Sinclair was first

suggested by Pasulaet al. [16]. Although our proof has the same structure as that of Jerrum

and Sinclair, substantial technical work was required to complete the mapping from computing

the permanent to solving JPDA, including the usage of gating conditions that ensure appropriate

lower bounds on individual association probabilities.

Our second technical result is the complete specification of the transition structure for a

multi-scan version of MCMCDA that includes detection failure, false alarms, and track initiation

and termination. We prove that the resulting algorithm converges to the full Bayesian solution.

1MCMC has also been used for problems that are roughly isomorphic to the data association problem, including state estimation

in the switching Kalman filter [19] and stereo correspondence in computer vision [3].
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We also provide the first extensive experimental investigation of MCMCDA’s performance on

classical data association problems. We demonstrate remarkably effective real-time performance

compared to MHT under extreme conditions, such as a large number of targets in a dense

environment, low detection probabilities, and high false alarm rates. We also show the application

of MCMCDA to track people in video sequences.

The remainder of this paper is structured as follows. The multiple-target tracking problem

and its probabilistic model are described in Section II. In Section III, the Markov chain Monte

Carlo (MCMC) method is summarized. The single-scan MCMCDA algorithm is presented in

Section IV along with the proof that it approximates JPDA in polynomial time. The multi-scan

MCMCDA algorithm is described in Section V along with our experimental results.

II. M ULTIPLE-TARGET TRACKING

A. Problem Formulation

Let T ∈ Z+ be the duration of surveillance. LetK be the number of objects that appear in

the surveillance regionR during the surveillance period. Each objectk moves inR for some

duration[tki , t
k
f ] ⊂ [1, T ]. Notice that the exact values ofK and{tki , tkf } are unknown. Each object

arises at a random position inR at tki , moves independently aroundR until tkf and disappears.

At each time, an existing target persists with probability1−pz and disppears with probabilitypz.

The number of objects arising at each time overR has a Poisson distribution with a parameter

λbV where λb is the birth rate of new objects per unit time, per unit volume, andV is the

volume ofR. The initial position of a new object is uniformly distributed overR.

Let F k : Rnx → Rnx be the discrete-time dynamics of the objectk, wherenx is the dimension

of the state variable, and letxk
t ∈ Rnx be the state of the objectk at timet. The objectk moves

according to

xk
t+1 = F k(xk

t ) + wk
t , for t = tki , . . . , t

k
f − 1, (1)

wherewk
t ∈ Rnx are white noise processes. The white noise process is included to model non-

rectilinear motions of targets. The noisy observation (or measurement2) of the state of the object

is measured with a detection probabilitypd. Notice that, with probability1−pd, the object is not

detected and we call this a missing observation. There are also false alarms and the number of

2Note that the termsobservationandmeasurementare used interchangeably in this paper.
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false alarms has a Poisson distribution with a parameterλfV whereλf is the false alarm rate per

unit time, per unit volume. Letnt be the number of observations at timet, including both noisy

observations and false alarms. Letyj
t ∈ Rny be thej-th observation at timet for j = 1, . . . , nt,

whereny is the dimension of each observation vector. Each object generates a unique observation

at each sampling time if it is detected. LetHj : Rnx → Rny be the observation model. Then the

observations are generated as follows:

yj
t =

 Hj(xk
t ) + vj

t if j-th observation is fromxk
t

ut otherwise,
(2)

wherevj
t ∈ Rny are white noise processes andut ∼ Unif(R) is a random process for false alarms.

We assume that targets are indistinguishable in this paper, but if observations include target type

or attribute information, the state variable can be extended to include target type information.

The multiple-target tracking problem is to estimateK, {tki , tkf } and {xk
t : tki ≤ t ≤ tkf }, for

k = 1, . . . , K, from observations.

B. Solutions to the Multiple-Target Tracking Problem

Let Yt = {yj
t : j = 1, . . . , nt} be all measurements at timet and Y = {Yt : 1 ≤ t ≤ T} be

all measurements fromt = 1 to t = T . Let Ω be a collection of partitions ofY such that, for

ω ∈ Ω,

1) ω = {τ0, τ1, . . . , τK};

2)
⋃K

k=0 τk = Y andτi ∩ τj = ∅ for i 6= j;

3) τ0 is a set of false alarms;

4) |τk ∩ Yt| ≤ 1 for k = 1, . . . , K and t = 1, . . . , T ; and

5) |τk| ≥ 2 for k = 1, . . . , K.

An example of a partition is shown in Figure 1 andω is also known as ajoint association event

in literature. Here,K is the number of tracks for the given partitionω ∈ Ω and |τk| denotes

the cardinality of the setτk. We call τk a track when there is no confusion although the actual

track is the set of estimated states from the observationsτk. However, we assume there is a

deterministic function that returns a set of estimated states given a set of observations, so no

distinction is required. The fourth requirement says that a track can have at most one observation

at each time, but, in the case of multiple sensors with overlapping sensing regions, we can easily
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Fig. 1. (a) An example of observationsY (each circle represents an observation and numbers represent observation times). (b)

An example of a partitionω of Y

relax this requirement to allow multiple observations per track. A track is assumed to contain

at least two observations since we cannot distinguish a track with a single observation from a

false alarm, assumingλf > 0. For special cases, in whichpd = 1 or λf = 0, the definition ofΩ

can be adjusted accordingly.

Let et−1 be the number of targets from timet− 1, zt be the number of targets terminated at

time t and ct = et−1 − zt be the number of targets from timet− 1 that have not terminated at

time t. Let at be the number of new targets at timet, dt be the number of actual target detections

at time t andgt = ct + at − dt be the number of undetected targets. Finally, letft = nt − dt be

the number of false alarms. It can be shown that the posterior ofω is:

P (ω|Y ) ∝ P (Y |ω)
∏T

t=1 pzt
z (1− pz)

ctpdt
d (1− pd)

gtλat
b λft

f , (3)

whereP (Y |ω) is the likelihood of observationsY given ω, which can be computed based on

the chosen dynamic and measurement models.

As described in the introduction, two approaches to solve the multiple-target tracking problem

are maximum a posteriori(MAP) and Bayesian (orminimum mean square error(MMSE))

approaches. The MAP approach finds a partition of observations such thatP (ω|Y ) is maximized

and estimates states of targets based on the partition which maximizesP (ω|Y ). The MMSE

approach seeks the conditional expectations such asE(xk
t |Y ) to minimize the expected (square)

error. However, when the number of targets is not fixed, a unique labeling of each target is

required to findE(xk
t |Y ) under the MMSE approach.

III. M ARKOV CHAIN MONTE CARLO

Markov chain Monte Carlo (MCMC) plays a significant role in many fields such as physics,

statistics, economics, and engineering [21]. In some cases, MCMC is the only known general
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algorithm that finds a good approximate solution to a complex problem in polynomial time [20].

MCMC techniques have been applied to complex probability distribution integration problems,

counting problems, and combinatorial optimization problems [20], [21].

MCMC is a general method to generate samples from a distributionπ on a spaceΩ by

constructing a Markov chainM with statesω ∈ Ω and stationary distributionπ(ω). We now

describe an MCMC algorithm known as the Metropolis-Hastings algorithm. If we are at state

ω ∈ Ω, we proposeω′ ∈ Ω following the proposal distributionq(ω, ω′). The move is accepted

with an acceptance probabilityA(ω, ω′) where

A(ω, ω′) = min

(
1,

π(ω′)q(ω′, ω)

π(ω)q(ω, ω′)

)
, (4)

otherwise the sampler stays atω. With this construction, the detailed balance condition is satisfied,

i.e., for all ω, ω′ ∈ Ω with ω′ 6= ω,

Q(ω, ω′) = π(ω)P (ω, ω′) = π(ω′)P (ω, ω′), (5)

whereP (ω, ω′) = q(ω, ω′)A(ω, ω′) is the transition probability fromω to ω′.

If M is irreducible and aperiodic, thenM converges to its stationary distribution by the ergodic

theorem [22]. Hence, for a given bounded functionf , the sample mean̂f = 1
T

∑T
t=1 f(ωt), where

ωt is the state ofM at time t, converges toEπf(ω) asT → ∞. Notice that (4) requires only

the ability to compute the ratioπ(ω′)/π(ω), avoiding the need to normalizeπ.

An ergodic chainM on state spaceΩ converges to its stationary distribution asymptotically.

But a practical question is how fastM approaches stationarity. One way to measure the rate

of convergence ofM to stationarity is the “mixing time” of the Markov chain. LetP be the

transition probabilities ofM and letP t
ω(·) be the distribution of the state at timet given that

M is started from the initial stateω ∈ Ω. If π is the stationary distribution ofM, then thetotal

variation distanceat time t with initial stateω is defined as

∆ω(t) = ‖P t
ω − π‖ = max

S⊂Ω
|P t

ω(S)− π(S)| = 1

2

∑
y∈Ω

|P t
ω(y)− π(y)|. (6)

The rate of convergence ofM to stationarity can be measured by themixing time:

τω(ε) = min{t : ∆ω(s) ≤ ε for all s ≥ t}. (7)

One approach to boundτω(ε) of a Markov chain with a complex structure is the canonical

path method [20]. In this paper, we consider a highly complex Markov chain, hence we use
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the canonical path method to boundτω(ε) of the Markov chain simulated by the MCMCDA

algorithm given in Section IV. For the remainder of this section, we describe the canonical path

method.

For a finite, reversible and ergodic Markov chainM with state spaceΩ, consider an undirected

graphG = (V, E) whereV = Ω andE = {(x, y) : Q(x, y) > 0} (recall the definition ofQ(·, ·)

from (5)). So an edge(x, y) ∈ E indicates that the Markov chainM can make a transition from

x to y or from y to x in a single step. For each ordered pair(x, y) ∈ Ω2, the canonical pathγxy

is a simple path fromx to y in G. In terms ofM, the canonical pathγxy is a sequence of legal

transitions fromx to y in M. Let Γ = {γxy : x, y ∈ Ω} be the set of all canonical paths. Now

the mixing time of the chain is related to themaximum edge loading:

ρ̄ = ρ̄(Γ) = max
e

1

Q(e)

∑
γxy3e

π(x)π(y)|γxy|. (8)

If ρ̄ is not so big,i.e., no single edge is overloaded, then the Markov chain can move around

fast and achieve the rapidly mixing property. The main result for the canonical path method is

as follows [20], [23]:

Theorem 1:Let M be a finite, reversible, ergodic Markov chain with loop probabilities

P (x, x) ≥ 1
2

for all statesx. Let Γ be a set of canonical paths with maximum edge loadingρ̄.

Then the mixing time ofM satisfiesτx(ε) ≤ ρ̄(log π(x)−1 + log ε−1), for any choice of initial

statex.

IV. SINGLE-SCAN MCMCDA

In this section, we consider a special case of the multiple-target tracking problem described

in Section II, in which the number of targets is fixed and known, and propose the single-scan

MCMCDA. Then, we prove that the single-scan MCMCDA algorithm finds an approximate

solution to JPDA in polynomial time.

A. Single-Scan MCMCDA Filter

The single-scan MCMCDA filter is based on the same filtering method used in the JPDA filter

[1]. JPDA has been traditionally used with the Kalman filter, assuming linear-Gaussian models,

i.e., linear dynamic and measurement models and white Gaussian noise processes [1]. However,

JPDA has also been applied with a nonlinear filtering algorithm such as a particle filter [24]. We
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present the single-scan MCMCDA filter under the general dynamics and measurement models

defined in Section II. The description of the single-scan MCMCDA filter for linear-Gaussian

models is given in [25].

Suppose that we have the distribution̂P (Xk
t−1|y1:t−1) from the previous filtering timet − 1,

for each targetk, where P̂ (X|y) is an approximation of the distributionP (X|y) and y1:t =

{y1, . . . , yt}. Notice that we can only approximateP (Xk
t−1|y1:t−1) since we process each measure-

ment scan sequentially; this is why the JPDA filter is a suboptimal approximation to the optimal

Bayesian filter. We follow the notations defined in Section II, except that random variables are

denoted by capital letters. Notice that, for linear-Gaussian models such as those used in [25], [1],

P̂ (Xk
t−1|y1:t−1) is a Gaussian distribution and completely described by its mean and variance.

Step 1 (Prediction): For eachk, compute the distribution

P̂ (Xk
t |y1:t−1) :=

∫
P (Xk

t |xk
t−1, y1:t−1)P̂ (xk

t−1|y1:t−1)dxk
t−1

=

∫
P (Xk

t |xk
t−1)P̂ (xk

t−1|y1:t−1)dxk
t−1, (9)

where the Markovian assumption is used in the second equality andP (Xk
t |xk

t−1) is determined

by the noise processwk
t in (1).

Step 2 (Measurement Validation): For eachk and j, compute the distribution

P̂ k(Y j
t |y1:t−1) :=

∫
P (Y j

t |xk
t , y1:t−1)P̂ (xk

t |y1:t−1)dxk
t

=

∫
P (Y j

t |xk
t )P̂ (xk

t |y1:t−1)dxk
t , (10)

where the second equality uses the fact the current observation is independent of previous

observations given the current state andP (Y j
t |xk

t ) is determined by the noise processvj
t in

(2). Notice thatP̂ k(yj
t |y1:t−1) is the probability density of having observationyj

t given y1:t−1,

when yj
t is an observation of targetk. Again, for linear-Gaussian models,̂P k(Y j

t |y1:t−1) is a

Gaussian distribution and completely determined by its mean and variance. As in JPDA, we

validate measurements and use only validated measurements when estimating states of targets.

The measurementyj
t is validated for targetk, if and only if

P̂ k(yj
t |y1:t−1) ≥ δk, (11)

whereδk are appropriate thresholds. We assume that all measurements are validated with at least

one target. If not, we can always consider the reduced problem, which consists of only validated
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measurements and targets with at least one validated measurement, and separately estimate states

of targets with no validated measurement.

Step 3 (State Estimation): Let Ω be a set of all feasible joint association events at timet. For

notational convenience, the subscriptt is dropped when there is no confusion. For eachω ∈ Ω,

ω = {(j, k)}, where(j, k) denotes an event that observationj is associated with targetk. A

joint association eventω is feasible when (i) for each(j, k) ∈ ω, yj
t is validated for targetk;

(ii) an observation is associated with at most one target; and (iii) a target is associated with at

most one observation.

Let N be the number of validated observations. We encode the feasible joint association events

in a bipartite graph. LetG = (U, V,E) be a bipartite graph, whereU = {yj
t : 1 ≤ j ≤ N} is a

vertex set of validated observations,V = {k : 1 ≤ k ≤ K} is a vertex set of target indices, and

E = {(u, v) : u ∈ U, v ∈ V, P̂ v(u|y1:t−1) ≥ δv}. An edge(u, v) ∈ E indicates that observationu

is validated for targetv according to (11). Then a feasible joint association event is amatching

in G, i.e., a subsetM ⊂ E such that no two edges inM share a vertex. The set of all feasible

joint association eventsΩ can be represented asΩ ⊂ M0(G) ∪ · · · ∪MK(G), whereMk(G) is

a set of k-matchings inG.

Finally, using the total probability theorem, compute the distribution

P̂ (Xk
t |y1:t) :=

∑
ω∈Ω

P̂ (Xk
t |ω, y1:t)P̂ (ω|y1:t) =

nt∑
j=0

βjkP̂ (Xk
t |ωjk, y1:t), (12)

whereωjk denotes the event{ω 3 (j, k)}, ω0k denotes the event that no observation is associated

with targetk, andβjk is an association probability, such that,

βjk = P̂ (ωjk|y1:t) =
∑

ω:(j,k)∈ω

P̂ (ω|y1:t). (13)

P̂ (Xk
t |ωjk, y1:t) in (12) can be easily computed by considering it as a single target estima-

tion problem with a single observation. Hence, the computation ofP̂ (Xk
t |y1:t) reduces to the

computation ofβjk. The computation ofβjk requires a summation over the posteriors, hence

the enumeration of all joint association events. In JPDA,E(Xk
t |y1:t) is estimated in the same

manner as (12) and JPDA is a method for estimating expectations such asE(Xk
t |y1:t) using the

association probabilities{βjk} in the presence of the identity uncertainty. As mentioned earlier,

the exact calculation of{βjk} in JPDA is NP-hard [10] and it is the major drawback of JPDA.



OH et al.: MARKOV CHAIN MONTE CARLO DATA ASSOCIATION FOR MULTIPLE-TARGET TRACKING 12

In the next sections, we describe an algorithm which approximates the association probabilities

{βjk} and prove that the running time of the algorithm is polynomial in the size of the problem.

B. Single-Scan MCMCDA Algorithm

The single-scan MCMCDA algorithm is used to approximate{βjk} in the single-scan MCM-

CDA filter described in the previous section. Based on the parametric false alarm model described

in Section II-A, the posterior ofω ∈ Ω can be written as

P (ω|y1:t) =
1

Z0

P (ω|y1:t−1)P (yt|ω, y1:t−1) =
1

Z
P (ω)P (yt|ω, y1:t−1)

≈ 1

Z
P (ω)P̂ (yt|ω, y1:t−1)

=
1

Z
λ

N−|ω|
f p

|ω|
d (1− pd)

K−|ω|
∏

(u,v)∈ω

P̂ v(u|y1:t−1) =: P̂ (ω|y1:t), (14)

whereZ0 andZ are normalizing constants, the Bayes rule is used in the first equality, and the

second equality uses that fact thatω is independent ofy1:t−1.

The MCMC data association (MCMCDA) algorithm is an MCMC algorithm whose state

space is the set of all feasible joint association eventsΩ and whose stationary distribution is

the posteriorP̂ (ω|y1:t) (14). Each step of the MCMCDA algorithm is described in Algorithm 1

along with three MCMC moves (addition, deletion and switch moves), where we use the sampling

method from [20]. In Algorithm 1, since we have a uniform proposal distribution,A(ω, ω′) =

min
(
1, π(ω′)

π(ω)

)
, whereπ(ω) = P̂ (ω|y1:t) from (14).

C. Analysis

Let M be the Markov chain simulated by Algorithm 1. Since the self-loop probability is

nonzero,M is aperiodic. It can be easily seen thatM is irreducible,i.e., all states communicate,

for example via the empty matching. In addition, the transitions described in Algorithm 1 satisfy

the detailed balance condition (5) soM is reversible. Hence, by the ergodic theorem, the chain

converges to its stationary distribution [22].

Let us first take a look at the complexity of the problem. As noted earlier, the state space of

the Markov chainM is Ω ⊂ M0(G) ∪ · · · ∪MK(G). For eachk, |Mk(G)| ≤
(

K
k

)
N !

(N−k)!
with

equality if the subgraph ofG with thek chosen vertices inV is a complete bipartite graph,i.e.,
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Algorithm 1 MCMCDA (single step)
sampleU from Unif[0, 1]

if U < 1
2

then

ω′ = ω

else

choosee = (u, v) ∈ E uniformly at random

if e ∈ ω then

ω′ = ω − e (deletion move)

else if both u andv are unmatched inω then

ω′ = ω + e (addition move)

else if exactly one ofu andv is matched inω ande′ is the matching edgethen

ω′ = ω + e− e′ (switch move)

else

ω′ = ω

end if

end if

ω = ω′ with probability A(ω, ω′)

all observations are validated for allk chosen targets. Hence, we can bound the size ofΩ as

|Ω| ≤ |M0(G)|+ · · ·+ |MK(G)| ≤
K∑

k=0

(
K

k

)
N !

(N − k)!
. (15)

Certainly, the size of the state space grows exponentially as the number of targets or the number

of observations increases, hence the exact calculation of JPDA by enumeration is not feasible

when the number of targets or the number of observations is large.

In (14), the normalizing constant becomes

Z =
∑
ω∈Ω

λ
N−|ω|
f p

|ω|
d (1− pd)

K−|ω|
∏

(u,v)∈ω

P̂ v(u|y1:t−1)

 . (16)

We assume that each likelihood term can be bounded asL ≤ P̂ v(u|y1:t−1) ≤ L̄, for all

(u, v) ∈ E, whereL = min δk and L̄ can be precomputed based on̂P v(u|y1:t−1). Here, we
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are making a reasonable assumption thatP̂ v(u|y1:t−1) ≤ L̄ < ∞ for all (u, v) ∈ E, e.g. linear-

Gaussian models [25]. Notice that the lower boundL is due to the measurement validation. In

JPDA, the measurement validation is used to reduce the number of feasible joint association

events. However, we later find that it is required to approximate the association probabilities in

polynomial time.

For Theorem 2 below, letC =
pdL̄

λf(1−pd)
, D =

λf(1−pd)

Lpd
and R = max{1, C,D}. Also define

m1 = max{1, L̄}, m2 = min{1, L},

m3(K,N) = max
0≤k≤K

{λN−k
f pk

d(1− pd)
K−k},

m4(K, N) = min
0≤k≤K

{λN−k
f pk

d(1− pd)
K−k}, and

m5(K, N) = K log
m1

m2

+ log
m3(K,N)

m4(K,N)
+

K+1∑
k=1

log k +
N∑

n=1

log n.

Remark 1: If .5 < pd < 1 and λf < 1 − pd, then m3(K, N) = λN−K
f pK

d and m4(K, N) =

λN
f (1− pd)

K . So m3(K, N)/m4(K, N) =
(

pd
λf(1−pd)

)K

andK is the only remaining exponent.

Notice that the omitted proofs appear in Appendix.

Theorem 2:Suppose thatλf > 0 and0 < pd < 1. Then the mixing time of the Markov chain

M is bounded byτx(ε) ≤ 4R4K2N(m5(K, N) + log ε−1) for all x ∈ Ω.

Remark 2:Let τ̄(ε) be the upper bound found in Theorem 2.τ̄(ε) is polynomial inK and

N . If m3(K, N)/m4(K, N) does not grow fast,e.g., Remark 1,τ̄(ε) = O(K2N(K log K +

N log N + log ε−1)). If K is fixed, τ̄(ε) = O(N(N log N + log ε−1)).

Let p(ω) be the distribution of the states ofM after simulating Algorithm 1 for at least̄τ(ε)

steps. Then the total variation distance satisfies‖p − π‖ ≤ ε. So we can sample fromp to

estimate{βjk}. However, there is a small bias in our estimates since we are not sampling from

π. The following theorem gives an upper bound on the number of samples needed for finding

good estimates.

Theorem 3:Let 0 < ε1, ε2 ≤ 1 and 0 < η < .5. Suppose that‖p − π‖ ≤ ε for ε ≤ ε1ε2/8.

Then, with a total of504ε−2
1 ε−1

2 dlog η−1e samples fromp, we can find estimateŝβjk for βjk with

probability at least1 − η, such that, forβjk ≥ ε2, β̂jk estimatesβjk within ratio 1 + ε1, i.e.,

(1− ε1)βjk ≤ β̂jk ≤ (1 + ε1)βjk, and, forβjk < ε2, |β̂jk − βjk| ≤ (1 + ε1)ε2.

Remark 3:Following Remark 2, for fixedK, τ̄(ε) = O(N(N log N + log ε−1)). Combining
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this fact with Theorem 3, the time complexity of the overall procedure is

T = O(ε−2
1 ε−1

2 log η−1N(N log N + log(ε−1
1 ε−1

2 ))).

Hence, with a total ofT samples, Algorithm 1 finds estimateŝβjk for βjk with probability at

least1 − η, such that, forβjk ≥ ε2, β̂jk estimatesβjk within ratio 1 + ε1, and, forβjk < ε2,

|β̂jk − βjk| ≤ (1 + ε1)ε2. We can simplify further by lettingε0 = ε1ε2. Then the time complexity

is O(ε−2
0 log η−1N(N log N + log(ε−1

0 ))).

D. Simulation Results

In this section, we show a simulation confirming our findings from last section. Since our

goal is to estimate the association probabilities, we define the variation distance between two

sets of association probabilitiesβjk and β̂jk by ∆β = maxj,k |βjk − β̂jk|. Eachβjk is computed

exactly by JPDA and eacĥβjk is estimated by MCMCDA. The upper bound on the number of

required samples found in Section IV-C is based on the worst-case analysis and, in practice,

MCMC finds solutions much faster in most cases. We use the most common method to estimate

β̂jk following [26]:

β̂jk =
1

nmc− nbi

nmc∑
n=nbi

I((j, k) ∈ ωn),

wherenmc and nbi are the total number of samples and the number of initial burn-in samples,

respectively, andωn is the n-th sample. A simple case is chosen to demonstrate MCMCDA,

in which two predicted observations are located at[0, 1]T and [0,−1]T . P̂ k(yj
t |y1:t−1) has a

Gaussian distribution with zero mean and covarianceBk = diag(1, 1) for k ∈ {1, 2}. There are

15 observations as shown in Figure 2 (left). Other parameters are:δk = p((yj
t − ŷk)T (Bk)−1(yj

t −

ŷk) = 4) for k ∈ {1, 2}, V = 16, λf = .8125, and pd = .98. In Figure 2 (right), the average

variation distance between two sets of association probabilitiesβjk andβ̂jk from 10 independent

runs is shown as a function of number of samples.

V. M ULTI -SCAN MCMCDA

In this section, we present an algorithm for solving the multiple-target tracking problem

described in Section II. The algorithm is presented in Section V-A and its performance is

compared against MHT in Section V-B.
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Fig. 2. (left) Expected observations (crosses) and observations (dots). (right) Average variation∆β as a function of the total

number of samples (solid line). The dotted lines show the sample standard deviation from the average.

A. Multi-Scan MCMCDA Algorithm

The multi-scan MCMCDA algorithm is described in Algorithm 2. It is an MCMC algorithm

whose state space isΩ as defined in Section II-B and whose stationary distribution is the posterior

(3). The proposal distribution for MCMCDA consists of five types of moves (a total of eight

moves). They are (1) birth/death move pair; (2) split/merge move pair; (3) extension/reduction

move pair; (4) track update move; and (5) track switch move. The MCMCDA moves are

graphically illustrated in Figure 3. We index each move by an integer such thatm = 1 for

a birth move,m = 2 for a death move and so on. The movem is chosen randomly from the

distribution ξK(m) whereK is the number of tracks of the current partitionω. When there is

no track, we can only propose a birth move, so we setξ0(m = 1) = 1 and 0 for all other

moves. When there is only a single target, we cannot propose a merge or track switch move, so

ξ1(m = 4) = ξ1(m = 8) = 0. For other values ofK andm, we assumeξK(m) > 0. The inputs

for MCMCDA are the set of all observationsY , the number of samplesnmc, the initial stateωinit,

and a bounded functionX : Ω → Rn. At each step of the algorithm,ω is the current state of

the Markov chain. The acceptance probabilityA(ω, ω′) is defined in (4) whereπ(ω) = P (ω|Y )

from (3). The outputX̂ approximates the MMSE estimateEπX and ω̂ approximates the MAP

estimatearg max P (ω|Y ). The computation of̂ω can be considered as simulated annealing at

a constant temperature. Notice that MCMCDA can provide both MAP and MMSE solutions to

the multiple-target tracking problem.

An MCMC algorithm can be specialized and made more efficient by incorporating the domain
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Algorithm 2 Multi-Scan MCMCDA
Input: Y, nmc, ωinit, X : Ω → Rn

Output: ω̂, X̂

ω = ωinit; ω̂ = ωinit; X̂ = 0

for n = 1 to nmc do

proposeω′ based onω (see sections from V-A.1 to V-A.5)

sampleU from Unif[0, 1]

ω = ω′ if U < A(ω, ω′)

ω̂ = ω if p(ω|Y )/p(ω̂|Y ) > 1

X̂ = n
n+1

X̂ + 1
n+1

X(ω)

end for

specific knowledge. In multiple-target tracking, we can make two assumptions: (1) the maximum

directional speed of any target inR is less than̄v; and (2) the number of consecutive missing

observations of any track is less than̄d. The first assumption is reasonable in a surveillance

scenario since, in many cases, the maximum speed of a vehicle is generally known based on

the vehicle type and terrain conditions. The second assumption is a user-defined parameter. Let

pdt(s) = 1 − (1 − pd)
s be the probability that an object is observed at least once out ofs

measurement times. Then, for givenp̄dt, we setd̄ ≥ log(1 − p̄dt)/ log(1 − pd) to detect a track

with probability at least̄pdt. For example, givenpd = .7 and p̄dt = .99, a track is detected with

probability larger than.99 for d̄ ≥ 4. We will now assume that these two new conditions are

added to the definition ofΩ so each elementω ∈ Ω satisfies these two additional assumptions.

We use a data structure, a neighborhood tree of observations, which groups temporally sep-

arated observations based on distances, to propose a new partitionω′ in Algorithm 2. A neigh-

borhood tree of observations is defined as

Ld(y
j
t ) = {yk

t+d ∈ yt+d : ‖yj
t − yk

t+d‖ ≤ d · v̄}

for d = 1, . . . , d̄, j = 1, . . . , nt and t = 1, . . . , T − 1. Here‖ · ‖ is the usual Euclidean distance.

The parameterd allows missing observations. The use of this neighborhood tree makes the

algorithm more scalable since distant observations will be considered separately and makes the

computations of the proposal distribution easier. It is similar to the clustering technique used in
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Fig. 3. Graphical illustration of MCMCDA moves (associations are indicated by dotted lines and rings are false alarms)

MHT but Ld is fixed for a given set of observations.

We now describe each move of the sampler in detail. First, letζ(d) be a distribution of a

random variabled taking values from{1, 2, . . . , d̄}. We assume the current state of the chain is

ω = ω0 ∪ ω1 ∈ Ω, whereω0 = {τ0} andω1 = {τ1, . . . , τK}. The proposed partition is denoted

by ω′ = ω′0 ∪ ω′1 ∈ Ω. Note the abuse of notation below with indexing of time,i.e., when we

sayτ(ti), ti means the time at which a target corresponding to the trackτ is observedi times.

1) Birth and Death Moves (Fig. 3,a ↔ b): For a birth move, we increase the number of

tracks fromK to K ′ = K+1 and selectt1 uniformly at random (u.a.r.) from{1, . . . , T−1} as an

appearance time of a new track. LetτK′ be the track of this new object. Then we choosed1 from

the distributionζ. Let L1
d1

= {yj
t1 : Ld1(y

j
t1) 6= ∅, yj

t1 6∈ τk(t1), j = 1, . . . , nt1 , k = 1, . . . , K}. L1
d1

is a set of observations att1 such that, for anyy ∈ L1
d1

, y does not belong to other tracks and

y has at least one descendant inLd1(y). We chooseτK′(t1) u.a.r. fromL1
d1

. If L1
d1

is empty, the

move is rejected since the move is not reversible. Once the initial observation is chosen, we then

choose the subsequent observations for the trackτK′. For i = 2, 3, . . ., we choosedi from ζ and

chooseτK′(ti) u.a.r. fromLdi
(τK′(ti−1))\{τk(ti−1 +di) : k = 1, . . . , K} unless this set is empty.

But, for i = 3, 4, . . ., the process of adding observations toτK′ terminates with probabilityγ,

where0 < γ < 1. If |τK′| ≤ 1, the move is rejected. We then propose this modified partition

whereω′1 = ω1∪{τK′} andω′0 = {τ0 \ τK′}. For a death move, we simply choosek u.a.r. from

{1, . . . , K} and delete thek-th track and propose a new partition whereω′1 = ω1 \ {τk} and

ω′0 = {τ0 ∪ τk}.



OH et al.: MARKOV CHAIN MONTE CARLO DATA ASSOCIATION FOR MULTIPLE-TARGET TRACKING 19

2) Split and Merge Moves (Fig. 3,c ↔ d): For a split move, we selectτs(tr) u.a.r. from

{τk(ti) : |τk| ≥ 4, i = 2, . . . , |τk| − 2, k = 1, . . . , K}. Then we split the trackτs into τs1 and τs2

such thatτs1 = {τs(ti) : i = 1, . . . , r} and τs2 = {τs(ti) : i = r + 1, . . . , |τs|}. The modified

track partition becomesω′1 = (ω1 \ {τs}) ∪ {τs1} ∪ {τs2} andω′0 = ω0. For a merge move, we

consider the set

M = {(τk1(tf ), τk2(t1)) : τk2(t1) ∈ Lt1−tf (τk1(tf )), f = |τk1| for k1 6= k2, 1 ≤ k1, k2 ≤ K}.

We select a pair(τs1(tf ), τs2(t1)) u.a.r. fromM . The tracks are combined into a single track

τs = τs1 ∪ τs2. Then we propose a new partition whereω′1 = (ω1 \ ({τs1} ∪ {τs2})) ∪ {τs} and

ω′0 = ω0.

3) Extension and Reduction Moves (Fig. 3,e ↔ f ): In a track extension move, we select a

trackτ u.a.r. fromK available tracks inω. We reassign observations forτ after the disappearance

time t|τ | as done in the track birth move. For a track reduction move, we select a trackτ u.a.r.

from K available tracks inω and r u.a.r. from {2, . . . , |τ | − 1}. We shorten the trackτ to

{τ(t1), . . . , τ(tr)} by removing the observations assigned toτ after the timetr+1.

4) Track Update Move (Fig. 3,g ↔ h): In a track update move, we select a trackτ u.a.r. from

K available tracks inω. Then we pickr u.a.r. from{1, 2, . . . , |τ |} and reassign observations for

τ after the timetr as done in the track birth move.

5) Track Switch Move (Fig. 3,i ↔ j): For a track switch move, we select a pair of observations

(τk1(tp), τk2(tq)) from two different tracks such that,τk1(tp+1) ∈ Ld(τk2(tq)) and τk2(tq+1) ∈

Ld′(τk1(tp)), whered = tp+1 − tq, d′ = tq+1 − tp and0 < d, d′ ≤ d̄. Then we let

τk1 = {τk1(t1), . . . , τk1(tp), τk2(tq+1), . . . , τk2(t|τk2
|)}

τk2 = {τk2(t1), . . . , τk2(tq), τk1(tp+1), . . . , τk1(t|τk1
|)}.

We now show that MCMCDA is an optimal Bayesian filter in the limit. LetM be the Markov

chain specified by Algorithm 2.

Lemma 1:Suppose that0 < pz, pd < 1 and λb, λf > 0. If ζ(d) > 0, for all d ∈ {1, . . . , d̄},

then the Markov chainM is irreducible. (See [27] for the proof.)

Theorem 4:Under the assumptions in Lemma 1, the Markov chainM is ergodic andX̂ →

EπX asnmc →∞.

Proof: From Lemma 1,M is irreducible.M is aperiodic since there is always a positive

probability of staying at the current state in the track update move. Now the transitions described
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in Algorithm 2 satisfy the detailed balance condition since it uses the Metropolis-Hastings kernel

(4). Hence, by the ergodic theorem [22], the chain converges to its stationary distributionπ(ω)

almost surely and̂X → EπX asnmc →∞.

B. Simulation Results

For the simulations we consider surveillance over a rectangular region on a plane,R =

[0, L]× [0, L] ⊂ R2. The state vector isx = [x, y, ẋ, ẏ]T where(x, y) is a position onR along

the usualx and y axes and(ẋ, ẏ) is a velocity vector. The linear dynamics and measurement

model are used:

xk
t+1 = Axk

t + Gwk
t yj

t = Cxk
t + vj

t

where

A =


1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1

 G =


T 2

s /2 0

0 T 2
s /2

Ts 0

0 Ts

 C =


1 0

0 1

0 0

0 0



T

,

and Ts is the sampling period,wk
t is a zero-mean Gaussian process with covarianceQ =

diag(100, 100), andvj
t is a zero-mean Gaussian process with covarianceR = diag(25, 25).

The complexity of multiple-target tracking problems can be measured by several metrics: (1)

the intensity of the false alarm rateλf; (2) the detection probabilitypd; and (3) the density

of tracks. The problem gets more challenging with increasingλf, decreasingpd, increasing

K, and increasing density of tracks. The number of tracks itself may not make the problem

more difficult if they are scattered apart. The difficulty arises when there are many tracks that

are moving closely and crossing each other; this is when the ambiguity of data association is

greater. Hence, we only consider situations in which tracks move very closely so we can control

the density of tracks by the number of tracks. We study the performance of the MCMCDA

algorithm against the greedy algorithm and MHT by varying the parameters listed above. To

make the comparison easier, we take the MAP approach, in which the states of targets are

estimated fromω̂ computed from Algorithm 2. The greedy algorithm is a batch-mode nearest

neighbor multiple-target tracking algorithm. The algorithm first marks all observations as false

alarms, and then picks two unmarked observations at different times to estimate an initial state.

Then it forms a canditate track by picking unmarked observations which are the nearest to

the predicted states for subsequent time steps. The candidate track is validated as a track and
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observations associated to the candidate track are marked if the marginal of the candidate track

exceeds a threshold. The process is repeated until no more tracks can be found.

Since the number of targets is not fixed, it is difficult to compare algorithms using a standard

criterion such as the mean square error. Hence, we introduce two new metrics to measure the

effectiveness of each data association algorithm: the normalized correct associations (NCA) and

incorrect-to-correct association ratio (ICAR)

NCA =
number of correct associations

number of associations in test case

ICAR =
number of incorrect associations
number of correct associations

.

We measure the performance of each algorithm by NCA, ICAR, the estimation error in the

number of tracks,Kerr = ||ω∗| − |ω||, and the running time of the algorithm.

Both MCMCDA and greedy algorithms are written in C++ with Matlab interfaces. We have

used the C++ implementation of MHT [28], which implements pruning, gating, clustering,N -

scan-back logic andk-best hypotheses. The parameters for MHT are fine-tuned so that it gives

similar performance as MCMCDA when there are 10 targets: the maximum number of hypotheses

in a group is 1000, the maximum track tree depth is 5, and the maximum Mahalanobis distance

is 5.9. All simulations are run on a PC with a 2.6-GHz Intel processor.

1) Experiment I (Number of Tracks):In this experiment, we varyK from 5 to 100. The other

parameters are held fixed:R = [0, 1000] × [0, 1000], T = 10, λfV = 1, d̄ = 1, v̄ = 130 unit

lengths per unit time. Since all tracks are observed, the number of observations increases as the

number of tracks increases. The results for MCMCDA are the average values over 10 repeated

runs and the initial state is initialized with the greedy algorithm and 10,000 samples are used.

The average NCAs, ICARs, the estimation error in the numbers of tracks and the running times

for three different algorithms are shown in Figure 4 and Figure 5 (the running time of MCMCDA

includes the initialization step). Although the maximum number of hypotheses of 1000 per group

is a large number, with increasing numbers of tracks, the performance of MHT deteriorates due

to pruning. But both greedy and MCMCDA maintain good performance, although the greedy

algorithm detects fewer tracks for largeK. In addition, the running times of both greedy and

MCMCDA are significantly less than that of MHT.

2) Experiment II (False Alarms):Now the settings are the same as Experiment I but we vary

the false alarm rates while the number of tracks is fixed atK = 10. The false alarm rates are
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Fig. 4. NCA (left) and ICAR (right) as functions ofK

Fig. 5. The estimation error inK, the number of tracks (left), and average running time (right) as functions ofK.

varied fromλfV = 1 to λfV = 100 with an increment of 10. Again, 10,000 samples are used

for MCMCDA. The average NCAs, ICARs and the estimation error in the numbers of tracks

for three different algorithms at different false alarm rates are shown in Figure 6 and Figure 8

(left). It shows the remarkable performance of MCMCDA at high false alarm rates while the

other two algorithms perform poorly. The greedy algorithm scores slightly higher in NCA than

MCMCDA but poorly in ICAR. In addition, it reports spurious tracks at high false alarm rates.

Notice that MHT does not make any correct associations at high false alarm rates,λfV ≥ 80,

so ICARs for MHT atλfV ≥ 80 are not reported.

3) Experiment III (Detection Probability):The detection probabilitypd is varied from0.3 to

0.9 with an increment of0.1 while keeping the other parameters as the previous experiments

exceptK = 10, λfV = 1, T = 15 and d̄ = 5. Now the tracks are not observed all the time.
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Fig. 6. NCA (left) and ICAR (right) as functions of false alarm rate

Fig. 7. NCA (left) and ICAR (right) as functions of detection probability

The average NCAs, ICARs and the estimation error in the numbers of tracks are shown in

Figure 7 and Figure 8 (right). For MCMCDA, we present two cases: MCMC(15K) with 15,000

samples and MCMC(150K) with 150,000 samples. It shows that MCMCDA outperforms the

other algorithms at low detection probabilities. At high detection probabilities, MHT scores

better than MCMCDA but it reports a higher number of tracks, meaning that it fragments tracks.

Although, in theory, MHT gives an optimal solution in the sense of MAP, it performs poorly in

practice when the detection probability is low or the false alarm rate is high due to the heuristics

such as pruning andN -scan-back techniques used to reduce the complexity. The heuristics are

required parts of MHT. Without the pruning andN -scan-back logic, the problem complexity

grows exponentially fast even for a small problem. In practice, MHT with heuristics works well

when a few hypotheses carry most of the weight. When the detection probability is low or
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Fig. 8. (left) Kerr as a function of false alarm rate. (right)Kerr as a function of detection probability

the false alarm rate is high, there are many hypotheses with appreciable weights and there is

no small set of dominating hypotheses, so MHT cannot perform well. In addition, when the

detection probability is high, MHT again suffers from a large number of observations. Another

noticeable benefit of the MCMCDA algorithm is that its running time can be regulated by the

number of samples and the number of observations but the running time of MHT depends on

the complexity of the problem instance, which is not predictable in advance.

4) Online MCMCDA Multiple-Target Tracker:The extension of MCMCDA to an online, real-

time tracking is a trivial task. We implement a sliding window of sizews using Algorithm 2. At

each time step, we use the previous estimate to initialize MCMCDA and run MCMCDA on the

observations belonging to the current window. A total of three test cases are generated: (case 1)

100 tracks, (case 2) 200 tracks and (case 3) 300 tracks. The surveillance duration is increased to

T = 1000 and the surveillance region is nowR = [0, 10000]× [0, 10000]. The other parameters

are: λfV = 10, pd = .9, d̄ = 3, v̄ = 230 and ws = 10. The objects appear and disappear at

random in time and space so the number of tracks changes in time. These test cases represent

instances of the general (discrete-time) multiple-target tracking problem. The average NCAs and

ICARs over the sliding window and the average execution time per simulation time are shown

in Table I. Notice that MCMCDA achieves excellent performance in all cases with less than a

second of execution time.
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TABLE I

PERFORMANCE OFONLINE MCMCDA TRACKER: RUNNING TIME (RT) IN SECONDS

Number of samples

1,000 5,000

K NCA ICAR RT NCA ICAR RT

100 .95 .19 .06 .98 .13 .28

200 .94 .06 .09 .97 .05 .41

300 .92 .07 .11 .97 .05 .55

C. Experiment

We have applied our algorithm to track people from video sequences taken by a stationary

camera. The sampling rate was 2 frames per second. Since we do not know the initial positions

of appearing objects, a tracking algorithm must be able to initiate and terminate tracks, hence

this application is a test of the algorithm presented in the previous section. We applied a simple

background subtraction algorithm to detect moving objects and Algorithm 2 is used to track

these objects. Some selected sequences are shown in Figure 9 along with the estimated tracks.

Figure 10 illustrates some failures of background subtraction as an object detection method.

The top row of Figure 10 shows a person walking under a tree who is not detected for six

frames. The bottom row of Figure 10 shows the case when the detection algorithm reports a

single detection when one person is occluded by another. In both cases, a person is not detected

for many frames, but MCMCDA was able to resume the track when the person appears again,

showing the robustness of the algorithm against missing observations.

VI. CONCLUSIONS

In this paper, we have presented Markov chain Monte Carlo data association (MCMCDA) for

solving data association problems arising in multiple-target tracking in a cluttered environment.

For the case of a fixed number of targets, we have shown that a single-scan MCMCDA algorithm

provides a fully polynomial randomized approximation scheme for the calculation involved in the

JPDA filter, which is known to be NP-hard. For the general multiple-target tracking problem,

in which an unknown number of targets appears and disappears at random times, we have

presented a multi-scan MCMCDA algorithm that is capable of initiating and terminating an

unknown number of tracks. The MCMCDA algorithm is flexible and can easily incorporate any
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Fig. 9. Tracking people from video sequences. Some selected sequences are shown for illustration. Detections are shown in

boxes and tracks are shown in solid lines. (Video scenes courtesy of Parvez Ahammad)

domain specific knowledge to make it more efficient. Instead of enumerating the entire space of

associations, MCMCDA randomly samples the region where the posterior is concentrated. Our

simulation results show the remarkable performance of the MCMCDA algorithm under extreme

conditions such as a large number of targets in a dense environment, low detection probabilities,

and high false alarm rates. We have also shown that the algorithm can be formulated as an

online, real-time algorithm with excellent performance.

VII. A PPENDIX

The proofs shown here parallel the proofs by Jerrum and Sinclair [20] in both structure and

details; the main differences are its application to the well-known data association problem in
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Fig. 10. Examples of missing detections. (top) A person walking under a tree is not detected from frame 14 to frame 19.

(bottom) A person is occluded by another person and not detected from frame 38 to frame 40

multiple-target tracking and the use of the non-uniform likelihood function into the posterior,

allowing us to understand the relationship between the parameters in the multiple-target tracking

problem and the mixing time of the Markov chain.

A. Proof of Theorem 2

To prove Theorem 2, we need the following lemmas.

Lemma 2:Let C =
pdL̄

λf(1−pd)
andD =

λf(1−pd)

Lpd
. For anyω0, ω1, ω2 ∈ Ω, if ω1 = ω0 − e0, for

some edgee0 ∈ ω0, andω2 = ω1 − e1, for some edgee1 ∈ ω1, then:

π(ω0)/π(ω1) ≤ C

π(ω0)/π(ω2) ≤ C2
and

π(ω1)/π(ω0) ≤ D

π(ω2)/π(ω0) ≤ D2.

Proof: ω0 andω1 are identical except thatω1 is missing the edgee0. So |ω0| = |ω1| + 1.
If e0 = (u, v) andk = |ω0|,

π(ω0)/π(ω1) =
λN−k

f pk
d(1− pd)K−k

λ
N−(k−1)

f pk−1

d (1− pd)K−(k−1)
P̂ v(u|y1:t−1)

=
pd

λf(1− pd)
P̂ v(u|y1:t−1) ≤ C.

On the other hand,

π(ω1)/π(ω0) =
λ

N−(k−1)

f pk−1

d (1− pd)K−(k−1)

λN−k

f pk
d(1− pd)K−k

1

P̂ v(u|y1:t−1)

=
λf(1− pd)

pd

1

P̂ v(u|y1:t−1)
≤ D.
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Sinceπ(ω0)/π(ω2) = π(ω0)/π(ω1) × π(ω1)/π(ω2), by repeating the above argument twice,

we getπ(ω0)/π(ω2) ≤ C2. Similarly, we haveπ(ω2)/π(ω0) ≤ D2.

Lemma 3:Let R = max{1, C,D}, where C and D are defined in Lemma 2. Then the

maximum edge loading of the Markov chainM is bounded as̄ρ ≤ 4R4K2N .

Proof: For each pair of matchingsX,Y in G, we define the canonical pathγXY as in [20].

Consider the symmetric differenceX ⊕ Y , whereX ⊕ Y = (X − Y ) ∪ (Y −X). X ⊕ Y is a

disjoint collection of paths inG including closed cycles, each of which has edges that belong to

X andY alternately. Suppose that we have fixed some arbitrary ordering on all simple paths in

G, and designate a “start vertex” to each of the paths, which is arbitrary if the path is a closed

cycle but must be an endpoint otherwise. This gives a unique orderingP1, P2, . . . , Pm on the

paths appearing inX ⊕ Y . The canonical path fromX to Y involves “unwinding” each of the

Pi in turn as follows. We need to consider two cases:

(i) Pi is not a cycle. Let Pi consist of the sequence(v0, v1, . . . , vl) of vertices with the start

vertex v0. If (v0, v1) ∈ Y , perform a sequence of switching moves replacing(v2j+1, v2j+2) by

(v2j, v2j+1) for j = 0, 1, . . ., and finish with an addition move ifl is odd. If (v0, v1) ∈ X, remove

(v0, v1) and proceed as before for the reduced path(v1, . . . , vl).

(ii) Pi is a cycle. Let Pi consist of the sequence(v0, v1, . . . , v2l+1) of vertices, forl ≥ 1, where

v0 is the start vertex, and(v2j, v2j+1) ∈ X for j = 0, . . . , l, with remaining edges belonging

to Y . We first remove the edge(v0, v1). Now we are left with an open pathO with endpoints

v0, v1, with the start vertexvk of O, for k ∈ {0, 1}. Then we unwindO as in (i) above but

treatingv1−k as the start vertex to identify that it was a cycle.

Let t be an arbitrary edge in the Markov chainM, i.e., a transition fromω to ω′ 6= ω. Let

cp(t) = {(X, Y ) : γXY 3 t} be the set of canonical paths that uset. We define a function

ηt : cp(t) → Ω as in [20],

ηt(X,Y ) =


X ⊕ Y ⊕ (ω ∪ ω′)− eXYt ,

if t is a switch move and the current path is a cycle;

X ⊕ Y ⊕ (ω ∪ ω′), otherwise,

whereeXYt is the edge inX adjacent to the start vertex that was removed first in (ii) above.

ηt(X, Y ) is always a matching inG andηt is injective as shown in [20]. Notice that the bipartite

graphG considered here is a subset of the graphs considered in [20] so the arguments aboutηt
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can be directly applied here.

Notice that

Q(t) = Q(ω, ω′) = π(ω)P (ω, ω′) =
1

2|E|
min{π(ω), π(ω′)}. (17)

Next, we boundπ(X)π(Y ) and we need to consider four cases:
(i) t is a deletion move. We haveω′ = ω − e and ηt(X, Y ) = X ⊕ Y ⊕ (ω ∪ ω′). Since

ω ∪ ηt(X,Y ) andX ∪ Y are identical when viewed as multisets,

π(X)π(Y ) = π(ω)π(ηt(X, Y )) =
2|E|Q(t)

min{π(ω), π(ω′)}π(ω)π(ηt(X, Y ))

= 2|E|Q(t)max

{
1,

π(ω)

π(ω′)

}
π(ηt(X, Y )) ≤ 2R|E|Q(t)π(ηt(X, Y )),

where we used the identity (17) in the second equality and Lemma 2 for the last inequality.
(ii) t is an addition move. We haveω′ = ω + e and ηt(X, Y ) = X ⊕ Y ⊕ (ω ∪ ω′). Since

ω ∪ ηt(X, Y ) andX ∪ Y are identical when viewed as multisets, using the arguments from (i),

π(X)π(Y ) ≤ 2R|E|Q(t)π(ηt(X, Y )).

(iii) t is a switch move and the current path is a cycle. Supposeω′ = ω + e − e′. Let
ω1 = ω + e. Thenω′ = ω1− e′. Since π(ω)

π(ω′)
= π(ω1)

π(ω′)
π(ω)
π(ω1)

, by Lemma 2,π(ω)
π(ω′)

≤ CD ≤ R2. Since
ηt(X, Y ) = X ⊕ Y ⊕ (ω ∪ ω′) − eXYt, the multisetsω ∪ ηt(X, Y ) differs from X ∪ Y only in
that e andeXYt are missing from it. Hence, by Lemma 2,

π(X)π(Y ) ≤ C2π(ω)π(ηt(X, Y )) = 2C2|E|Q(t)max

{
1,

π(ω)

π(ω′)

}
π(ηt(X, Y ))

≤ 2R4|E|Q(t)π(ηt(X, Y )).

(iv) t is a switch move and the current path is not a cycle. This case is similar to (iii) but the
multisetsω∪ηt(X, Y ) differs fromX∪Y only in thate is missing from it. Hence, by Lemma 2,

π(X)π(Y ) ≤ Cπ(ω)π(ηt(X, Y )) = 2C|E|Q(t)max

{
1,

π(ω)

π(ω′)

}
π(ηt(X, Y ))

≤ 2R3|E|Q(t)π(ηt(X, Y )).

In summary, we have, in all cases,π(X)π(Y ) ≤ 2R4|E|Q(t)π(ηt(X, Y )). Thus, for any
transitiont,

1

Q(t)

∑
γXY 3t

π(X)π(Y )|γXY | ≤ 2R4|E|
∑

γXY 3t

π(ηt(X, Y ))|γXY |

≤ 4R4K|E|
∑

γXY 3t

π(ηt(X, Y ))

≤ 4R4K|E| ≤ 4R4K2N

where the second inequality follows from the fact that the length of any canonical path is

bounded by2K, the third equality is due to the fact thatηt is injective andπ is a probability

distribution, and the last inequality follows from|E| ≤ KN . Hence,ρ̄ ≤ 4R4K2N .
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We now prove Theorem 2.M is a finite, reversible, ergodic Markov chain with loop proba-

bilities P (x, x) ≥ 1
2

for all statesx (see Section IV-B). Hence, by Theorem 1, we have

τx(ε) ≤ ρ̄(log π(x)−1 + log ε−1). (18)

The upper bound for̄ρ is computed from Lemma 3. Now we just need to find the upper bound
for π(x)−1. From (16),

Z ≤
∑
ω∈Ω

mK
1 m3(K, N) = mK

1 m3(K, N)|Ω|

≤ mK
1 m3(K, N)

K∑
k=0

(
K

k

)
N !

(N − k)!
≤ mK

1 m3(K, N)(K + 1)!N !,

where the second inequality is by (15). Although this bound onZ is not tight, it will serve our
purpose. For anyω ∈ Ω, π(ω) ≥ 1

Z
mK

2 m4(K, N) so

1

π(ω)
≤ Z

mK
2 m4(K, N)

≤
(

m1

m2

)K
m3(K, N)

m4(K, N)
(K + 1)!N !.

Hence,

log
1

π(ω)
≤ log

((
m1

m2

)K
m3(K, N)

m4(K, N)
(K + 1)!N !

)
= m5(K, N).

Putting all together, we have, for all initial statex ∈ Ω, τx(ε) ≤ 4R4K2N(m5(K, N)+log ε−1).

B. Proof of Theorem 3

Let βε2 = {(j, k) : βjk ≥ ε2}. For now, assume(j, k) ∈ βε2, i.e., βjk ≥ ε2. Let Xjk(ω) =

I((ŷk, yj) ∈ ω) where I is an indicator function. Notice thatEπ(Xjk) = π(ωjk) = βjk, where
ωjk = {ω ∈ Ω : (yj, k) ∈ ω}. Since‖p− π‖ ≤ ε,

|p(ωjk)− π(ωjk)| ≤ ε ≤ ε1π(ωjk)

8

|Varp(Xjk)− Varπ(Xjk)| ≤ 3ε ≤ 3ε1π(ωjk)

8
. (19)

Let β̄jk = 1
s

∑s
i=1 Xjk(ωi) be the sample mean ofs samples fromp. ThenE(β̄jk) = p(ωjk)

andVar(β̄jk) = 1
s
Varp(Xjk). By Chebyshev’s inequality,

P
(∣∣β̄jk − p(ωjk)

∣∣ >
ε1
3

p(ωjk)
)
≤ 9

ε21s

Varp(Xjk)

p(ωjk)2
. (20)

Now if |β̄jk − p(ωjk)| ≤ ε1
3
p(ωjk), from (19),

|β̄jk − π(ωjk)| ≤ |β̄jk − p(ωjk)|+ |p(ωjk − π(ωjk|

≤ ε1
3

p(ωjk) +
ε1
8

π(ωjk) ≤ ε1
2

π(ωjk)
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and β̄jk estimatesπ(ωjk) within ratio 1 + ε1. Sinceε1 < 1 andVarπ(Xjk) ≤ π(ωjk),

Varp(Xjk)

p(ωjk)2
≤

Varπ(Xjk) + 3
8
π(ωjk)(

7
8
π(ωjk)

)2 ≤ 2

π(ωjk)
. (21)

Hence, by choosings = 72ε−2
1 ε−1

2 and using (20) and (21),P
(
|β̄jk − p(ωjk)| > ε1

3
p(ωjk)

)
≤ 1

4
,

that is, β̄jk estimatesπ(ωjk) within ratio 1 + ε1 with probability at least3/4.
Now consider repeating the above experiment by an odd numbert times, independently. Let

β̂jk be the median of the resultingt values ofβ̄jk. From above, the probability that̂βjk fails to
approximateβjk within ratio 1 + ε1 is at most

t∑
i=(t+1)/2

(
t

i

)(
1

4

)i(
3

4

)t−i

≤
(

1

4

)t/2(
3

4

)t/2 t∑
i=(t+1)/2

(
t

i

)

≤
(

3

16

)t/2

2t =

(
3

4

)t/2

.

Now let t = 6dlog η−1e+ 1, this probability is bounded above byη. Hence, with a total ofst

samples,β̂jk estimatesπ(ωjk) within ratio 1 + ε1 with probability at least1 − η for βjk ≥ ε2.

Notice thatst is upper bounded by504ε−2
1 ε−1

2 dlog η−1e.

Now considerβjk that are smaller thanε2. With probability at least1 − η, for (j, k) ∈ βε2,

(1 − ε1)βjk ≤ β̂jk ≤ (1 + ε1)βjk. So if β̂jk ≥ (1 + ε1)ε2, we must have(j, k) ∈ βε2. Hence,

β̂jk ≤ (1 + ε1)ε2 or |β̂jk − βjk| ≤ (1 + ε1)ε2 for βjk < ε2.
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