So far in this book, we have focussed primarily on sets of data points that were as-
sumed to be independent and identically distributed (i.i.d.). This assumption allowed
us to express the likelihood function as the product over all data points of the prob-
ability distribution evaluated at each data point. For many applications, however,
the i.i.d. assumption will be a poor one. Here we consider a particularly important
class of such data sets, namely those that describe sequential data. These often arise
through measurement of time series, for example the rainfall measurements on suc-
cessive days at a particular location, or the daily values of a currency exchange rate,
or the acoustic features at successive time frames used for speech recognition. An
example involving speech data is shown in Figure 13.1. Sequential data can also
arise in contexts other than time series, for example the sequence of nucleotide base
pairs along a strand of DNA or the sequence of characters in an English sentence.
For convenience, we shall sometimes refer to ‘past’ and ‘future’ observations in a
sequence. However, the models explored in this chapter are equally applicable to all
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Figure 13.1

Example of a spectro-
gram of the spoken words “Bayes’ theo- 10000
rem” showing a plot of the intensity of the
spectral coefficients versus time index.
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forms of sequential data, not just temporal sequences.

It is useful to distinguish between stationary and nonstationary sequential dis-
tributions. In the stationary case, the data evolves in time, but the distribution from
which it is generated remains the same. For the more complex nonstationary situa-
tion, the generative distribution itself is evolving with time. Here we shall focus on
the stationary case.

For many applications, such as financial forecasting, we wish to be able to pre-
dict the next value in a time series given observations of the previous values. In-
tuitively, we expect that recent observations are likely to be more informative than
more historical observations in predicting future values. The example in Figure 13.1
shows that successive observations of the speech spectrum are indeed highly cor-
related. Furthermore, it would be impractical to consider a general dependence of
future observations on all previous observations because the complexity of such a
model would grow without limit as the number of observations increases, This leads
us to consider Markov models in which we assume that future predictions are inde-

Figure 13.2

13.1.
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The simplest approach to
modelling a sequence of ob-
servations is to treat them
as independent, correspond-
ing to a graph without links.

pendent of all but the most recent observations.

Although such models are tractable, they are also severely limited. We can ob-
tain a more general framework, while still retaining tractability, by the introduction
of latent variables, leading to state space models. As in Chapters 9 and 12, we shall
see that complex models can thereby be constructed from simpler components (in
particular, from distributions belonging to the exponential family) and can be read-
ily characterized using the framework of probabilistic graphical models. Here we
focus on the two most important examples of state space models, namely the hid-
den Markov model, in which the latent variables are discrete, and linear dynamical
systems, in which the latent variables are Gaussian. Both models are described by di-
rected graphs having a tree structure (no loops) for which inference can be performed
efficiently using the sum-product algorithm.

Markov Models

The easiest way to treat sequential data would be simply to ignore the sequential
aspects and treat the observations as i.i.d., corresponding to the graph in Figure 13.2.
Such an approach, however, would fail to exploit the sequential patterns in the data,
such as correlations between observations that are close in the sequence. Suppose,
for instance, that we observe a binary variable denoting whether on a particular day
it rained or not. Given a time series of recent observations of this variable, we wish
to predict whether it will rain on the next day. If we treat the data as i.i.d., then the
only information we can glean from the data is the relative frequency of rainy days.
However, we know in practice that the weather often exhibits trends that may last for
several days. Observing whether or not it rains today is therefore of significant help
in predicting if it will rain tomorrow.

To express such effects in a probabilistic model, we need to relax the i.i.d. as-
sumption, and one of the simplest ways to do this is to consider a Markov model.
First of all we note that, without loss of generality, we can use the product rule to
express the joint distribution for a sequence of observations in the form

N
pxy, . Xy) = Hp(x.,,,\x],. e X)) (13.1)

nh=1

If we now assume that each of the conditional distributions on the right-hand side
is independent of all previous observations except the most recent, we obtain the
first-order Markov chain, which is depicted as a graphical model in Figure 13.3. The
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Figure 13.3 A first-order Markov chain of ob-

Section 8.2
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Figure 13.4

servations {x, } in which the dis-
tribution p(x,|xn-1) of a particu-
lar observation x,, is conditioned
on the value of the previous ob-
servation x,,_ ;.

joint distribution for a sequence of /N observations under this model is given by

N
P(X1, .., XN) = p(x1) Hp(xnlxn_l). (13.2)

n=2

From the d-separation property, we see that the conditional distribution for observa-
tion x,,, given all of the observations up to time n, is given by

p(xnixlx v :Xn—l) ™ p(xn[x'n,fl) (133)

which is easily verified by direct evaluation starting from (13.2) and using the prod-
uct rule of probability. Thus if we use such a model to predict the next observation
in a sequence, the distribution of predictions will depend only on the value of the im-
mediately preceding observation and will be independent of all earlier observations.

In most applications of such models, the conditional distributions p(x,, [%,,_;)
that define the model will be constrained to be equal, corresponding to the assump-
tion of a stationary time series. The model is then known as a homogeneous Markov
chain. For instance, if the conditional distributions depend on adjustable parameters
(whose values might be inferred from a set of training data), then all of the condi-
tional distributions in the chain will share the same values of those parameters.

Although this is more general than the independence model, it is still very re-
strictive. For many sequential observations, we anticipate that the trends in the data
over several successive observations will provide important information in predict-
ing the next value. One way to allow earlier observations to have an influence is to
move to higher-order Markov chains. If we allow the predictions to depend also on
the previous-but-one value, we obtain a second-order Markov chain, represented by
the graph in Figure 13.4. The joint distribution is now given by

N
p(X1, .. xN) = p(x1)p(x2|%1) H P(Xp|Xp—1, Xn—2). (13.4)

=3

Again, using d-separation or by direct evaluation, we see that the conditional distri-
bution of x,, given x,,_; and x,,_, is independent of all observations x, . .. X,_3.

A second-order Markov chain, in
which the conditional distribution

of a particular observation x,
depends on the values of the two
previous observations x,_; and <!
Kn—2.
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e Zn Zn+1

Figure 13.5 We can represent sequen-
tial data using a Markov chain of latent
variables, with each observation condi-
tioned on the state of the corresponding
latent variable. This important graphical
structure forms the foundation both for the
hidden Markov model and for linear dy-
namical systems.

Each observation is now influenced by two previous observations. We can similarly
consider extensions to an M'" order Markov chain in which the conditional distri-
bution for a particular variable depends on the previous M variables. However, we
have paid a price for this increased flexibility because the number of parameters in
the model is now much larger. Suppose the observations are discrete variables hav-
ing K states. Then the conditional distribution p(x,,|x,_1) in a first-order Markov
chain will be specified by a set of i — 1 parameters for each of the K states of x,,_;
giving a total of K (K — 1) parameters. Now suppose we extend the model to an
M'™ order Markov chain, so that the joint distribution is built up from conditionals
P(Xn|Xn—agy - - Xpn—y). If the variables are discrete, and if the conditional distri-
butions are represented by general conditional probability tables, then the number
of parameters in such a model will have K™ ~1(K — 1) parameters. Because this
grows exponentially with M, it will often render this approach impractical for larger
values of M.

For continuous variables, we can use linear-Gaussian conditional distributions
in which each node has a Gaussian distribution whose mean is a linear function
of its parents. This is known as an autoregressive or AR model (Box et al., 1994;
Thiesson et al., 2004). An alternative approach is to use a parametric model for
P(Xn|Xn—af,-. . Xn—1) such as a neural network. This technique is sometimes
called a tapped delay line because it corresponds to storing (delaying) the previous
M values of the observed variable in order to predict the next value. The number
of parameters can then be much smaller than in a completely general model (for ex-
ample it may grow linearly with Af), although this is achieved at the expense of a
restricted family of conditional distributions.

Suppose we wish to build a model for sequences that is not limited by the
Markov assumption to any order and yet that can be specified using a limited number
of free parameters. We can achieve this by introducing additional latent variables to
permit a rich class of models to be constructed out of simple components, as we did
with mixture distributions in Chapter 9 and with continuous latent variable models in
Chapter 12. For each observation x,,, we introduce a corresponding latent variable
z,, (which may be of different type or dimensionality to the observed variable). We
now assume that it is the latent variables that form a Markov chain, giving rise to the
graphical structure known as a state space model, which is shown in Figure 13.5. It
satisfies the key conditional independence property that z,,_; and z,4, are indepen-
dent given z,,, so that

Zp41 A Zn—1 | - (135)
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The joint distribution for this model is given by

N N
P(X1, . XN, 20, 2y) = plzy) H P(Zn|Zn—1) H D% |2y CIIGETSE

n=2 n=1

Using the d-separation criterion, we see that there is always a path connecting any
two observed variables x,, and x,,, via the latent variables, and that this path is never
blocked. Thus the predictive distribution p(x,,1|X,...,x,) for observation Knt1
given all previous observations does not exhibit any conditional independence prop-
erties, and so our predictions for x,,; depends on all previous observations. The
observed variables, however, do not satisfy the Markov property at any order. We
shall discuss how to evaluate the predictive distribution in later sections of this chap-
ter.

There are two important models for sequential data that are described by this
graph. If the latent variables are discrete, then we obtain the hidden Markov model,
or HMM (Elliott et al., 1995). Note that the observed variables in an HMM may
be discrete or continuous, and a variety of different conditional distributions can be
used to model them. If both the latent and the observed variables are Gaussian (with
a linear-Gaussian dependence of the conditional distributions on their parents), then
we obtain the linear dynamical system.

Hidden Markov Models

The hidden Markov model can be viewed as a specific instance of the state space
model of Figure 13.5 in which the latent variables are discrete. However, if we
examine a single time slice of the model, we see that it corresponds to a mixture
distribution, with component densities given by p(x|z). It can therefore also be
interpreted as an extension of a mixture model in which the choice of mixture com-
ponent for each observation is not selected independently but depends on the choice
of component for the previous observation. The HMM is widely used in speech
recognition (Jelinek, 1997; Rabiner and Juang, 1993), natural language modelling
(Manning and Schiitze, 1999), on-line handwriting recognition (Nag ef al., 1986),
and for the analysis of biological sequences such as proteins and DNA (Krogh et al.,
1994; Durbin et al., 1998; Baldi and Brunak, 2001).

As in the case of a standard mixture model, the latent variables are the discrete
multinomial variables z,, describing which component of the mixture is responsible
for generating the corresponding observation x,,. Again, it is convenient to use a
l-of-# coding scheme, as used for mixture models in Chapter 9. We now allow the
probability distribution of z,, to depend on the state of the previous latent variable
zy, 1 through a conditional distribution p(z,, |z, ). Because the latent variables are
K -dimensional binary variables, this conditional distribution corresponds to a table
of numbers that we denote by A, the elements of which are known as transition
probabilities. They are given by A, = p(z, = 1|zp—1,; = 1), and because they
are probabilities, they satisfy 0 < A, < 1 with >~, A, = 1, so that the matrix A

Figure 13.6 Transition diagram showing a model whose la-
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tent variables have three possible states corre-
sponding to the three boxes. The black lines
denote the elements of the transition matrix
Aj.

has K'( K —1) independent parameters. We can then write the conditional distribution
explicitly in the form

K K

p(Z?-¢|Zn7|‘A) - HHA:I?;—LJ:,,A:I

k=1 j=1

(13.7)

The initial latent node z; is special in that it does not have a parent node, and so
it has a marginal distribution p(z,) represented by a vector of probabilities 7= with
elements 7, = p(z1, = 1), so that

(13.8)

where >, mx = 1.

The transition matrix is sometimes illustrated diagrammatically by drawing the
states as nodes in a state transition diagram as shown in Figure 13.6 for the case of
K = 3. Note that this does not represent a probabilistic graphical model, because
the nodes are not separate variables but rather states of a single variable, and so we
have shown the states as boxes rather than circles.

It is sometimes useful to take a state transition diagram, of the kind shown in
Figure 13.6, and unfold it over time. This gives an alternative representation of the
transitions between latent states, known as a lattice or trellis diagram, and which is
shown for the case of the hidden Markov model in Figure 13.7.

The specification of the probabilistic model is completed by defining the con-
ditional distributions of the observed variables p(x,, |z, ¢»), where ¢ is a set of pa-
rameters governing the distribution. These are known as emission probabilities, and
might for example be given by Gaussians of the form (9.11) if the elements of x are
continuous variables, or by conditional probability tables if x is discrete. Because
X, is observed, the distribution p(x,|2,. ¢) consists, for a given value of ¢, of a
vector of K numbers corresponding to the KA possible states of the binary vector z,,.
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Figure 13.7 If we unfold the state transition dia-
gram of Figure 13.6 over time, we obtain a lattice,
or trellis, representation of the latent states. Each
column of this diagram corresponds to one of the
latent variables z,,.

A J

Ass Y
n—2 n—1 7 n+ 1

We can represent the emission probabilities in the form

K
p(xnlzn, ) = [ [ p(xaldpy). (13.9)

k=1

We shall focuss attention on homageneous models for which all of the condi-
tional distributions governing the latent variables share the same parameters A, and
similarly all of the emission distributions share the same parameters ¢ (the extension
to more general cases is straightforward). Note that a mixture model for an i.i.d. data
set corresponds to the special case in which the parameters A;y, are the same for all
values of j, so that the conditional distribution p(z,,|z, _,) is independent of z,, ;.
This corresponds to deleting the horizontal links in the graphical model shown in
Figure 13.5.

The joint probability distribution over both latent and observed variables is then
given by

N N
p(X.210) = p(za|m) | [ [ p(znlzn—1, A) | T] ptmlzm. &) (13.10)

n=2 =1

where X = {x;,...,xy}, Z = {zy,...,2y},and 0 = {m, A, ¢} denotes the set
of parameters governing the model. Most of our discussion of the hidden Markov
model will be independent of the particular choice of the emission probabilities.
Indeed, the model is tractable for a wide range of emission distributions including
discrete tables, Gaussians, and mixtures of Gaussians. It is also possible to exploit
Exercise 13.4 discriminative models such as neural networks. These can be used to model the
emission density p(x|z) directly, or to provide a representation for p(z|x) that can
be converted into the required emission density p(x|z) using Bayes’ theorem (Bishop
et al., 2004),
We can gain a better understanding of the hidden Markov model by considering
it from a generative point of view. Recall that to generate samples from a mixture of
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Figure 13.8 |lllustration of sampling from a hidden Markov model having a 3-state latent variable z and a
Gaussian emission model p(x|z) where x is 2-dimensional. (a) Contours of constant probability density for the
emission distributions corresponding to each of the three states of the latent variable. (b) A sample of 50 points
drawn from the hidden Markov model, colour coded according to the component that generated them and with
lines connecting the successive observations. Here the transition matrix was fixed so that in any state there is a
5% probability of making a transition to each of the other states, and consequently a 90% probability of remaining

in the same state.

Section 8.1.2

Gaussians, we first chose one of the components at random with probability given by
the mixing coefficients mj, and then generate a sample vector x from the correspond-
ing Gaussian component. This process is repeated N times to generate a data set of
N independent samples. In the case of the hidden Markov model, this procedure is
modified as follows. We first choose the initial latent variable z; with probabilities
governed by the parameters 7;, and then sample the corresponding observation x; .
Now we choose the state of the variable z, according to the transition probabilities
p(2z2|z1 ) using the already instantiated value of z;. Thus suppose that the sample for
z; corresponds to state j. Then we choose the state & of z; with probabilities A
for k= 1,..., K. Once we know z; we can draw a sample for x, and also sample
the next latent variable z; and so on. This is an example of ancestral sampling for
a directed graphical model. If, for instance, we have a model in which the diago-
nal transition elements Ay are much larger than the off-diagonal elements, then a
typical data sequence will have long runs of points generated from a single compo-
nent, with infrequent transitions from one component to another. The generation of
samples from a hidden Markov model is illustrated in Figure 13.8,

There are many variants of the standard HMM model, obtained for instance by
imposing constraints on the form of the transition matrix A (Rabiner, 1989). Here we
mention one of particular practical importance called the left-to-right HMM, which
is obtained by setting the elements A;j, of A to zero if k < j, as illustrated in the
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Figure 13.9 Example of the state transition diagram for a 3-state A, Agg Agzy

left-to-right hidden Markov model. Note that once a
state has been vacated, it cannot later be re-entered. m O m

000

state transition diagram for a 3-state HMM in Figure 13.9. Typically for such models
the initial state probabilities for p(z, ) are modified so that p(z1,) = Land p(z1,) = 0
for 7 # 1, in other words every sequence is constrained to start in state j = 1. The
transition matrix may be further constrained to ensure that large changes in the state
index do not occur, so that A;, = 0if & > 7 4+ A. This type of model is illustrated
using a lattice diagram in Figure 13.10.

Many applications of hidden Markov models, for example speech recognition,
or on-line character recognition, make use of left-to-right architectures. As an illus-
tration of the left-to-right hidden Markov model, we consider an example involving
handwritten digits. This uses on-line data, meaning that each digit is represented
by the trajectory of the pen as a function of time in the form of a sequence of pen
coordinates, in contrast to the off-line digits data, discussed in Appendix A, which
comprises static two-dimensional pixellated images of the ink. Examples of the on-
line digits are shown in Figure 13.11. Here we train a hidden Markov model on a
subset of data comprising 45 examples of the digit ‘2. There are k' = 16 states,
each of which can generate a line segment of fixed length having one of 16 possible
angles, and so the emission distribution is simply a 16 x 16 table of probabilities
associated with the allowed angle values for each state index value. Transition prob-
abilities are all set to zero except for those that keep the state index % the same or
that increment it by 1, and the model parameters are optimized using 25 iterations of
EM. We can gain some insight into the resulting model by running it generatively, as
shown in Figure 13.11.

Figure 13.10 Lattice diagram for a 3-state left- P

to-right HMM in which the state index k is allowed
to increase by at most 1 at each transition. E=1

Figure 13.11

S
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-

Top row: examples of on-line handwritten

digits. Bottom row: synthetic digits sam-
pled generatively from a left-to-right hid-
den Markov model that has been trained

on a data set of 45 handwritten digits.

D122

One of the most powerful properties of hidden Markov models is their ability to
exhibit some degree of invariance to local warping (compression and stretching) of
the time axis. To understand this, consider the way in which the digit ‘2’ is written
in the on-line handwritten digits example. A typical digit comprises two distinct
sections joined at a cusp. The first part of the digit, which starts at the top left, has a
sweeping arc down to the cusp or loop at the bottom left, followed by a second more-
or-less straight sweep ending at the bottom right. Natural variations in writing style
will cause the relative sizes of the two sections to vary, and hence the location of the
cusp or loop within the temporal sequence will vary. From a generative perspective
such variations can be accommodated by the hidden Markov model through changes
in the number of transitions to the same state versus the number of transitions to the
successive state. Note, however, that if a digit ‘2" is written in the reverse order, that
is, starting at the bottom right and ending at the top left, then even though the pen tip
coordinates may be identical to an example from the training set, the probability of
the observations under the model will be extremely small. In the speech recognition
context, warping of the time axis is associated with natural variations in the speed of
speech, and again the hidden Markov model can accommodate such a distortion and
not penalize it too heavily.

13.2.1 Maximum likelihood for the HMM

If we have observed a data set X = {x;,..., Xy}, we can determine the param-
eters of an HMM using maximum likelihood. The likelihood function is obtained
from the joint distribution (13.10) by marginalizing over the latent variables

p(X[0) = p(X,Z|6). (13.11)
Z

Because the joint distribution p(X, Z|8) does not factorize over n (in contrast to the
mixture distribution considered in Chapter 9), we cannot simply treat each of the
summations over z, independently. Nor can we perform the summations explicitly
because there are N variables to be summed over, each of which has K states, re-
sulting in a total of K™V terms. Thus the number of terms in the summation grows
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exponentially with the length of the chain. In fact, the summation in (13.11) cor-
responds to summing over exponentially many paths through the lattice diagram in
Figure 13.7.

We have already encountered a similar difficulty when we considered the infer-
ence problem for the simple chain of variables in Figure 8.32. There we were able
to make use of the conditional independence properties of the graph to re-order the
summations in order to obtain an algorithm whose cost scales linearly, instead of
exponentially, with the length of the chain. We shall apply a similar technique to the
hidden Markov model.

A further difficulty with the expression (13.11) for the likelihood function is that,
because it corresponds to a generalization of a mixture distribution, it represents a
summation over the emission models for different settings of the latent variables.
Direct maximization of the likelihood function will therefore lead to complex ex-
pressions with no closed-form solutions, as was the case for simple mixture models
(recall that a mixture model for i.i.d. data is a special case of the HMM),

We therefore turn to the expectation maximization algorithm to find an efficient
framework for maximizing the likelihood function in hidden Markov models. The
EM algorithm starts with some initial selection for the model parameters, which we
denote by 6°'. In the E step, we take these parameter values and find the posterior
distribution of the latent variables p(Z|X, 8°'). We then use this posterior distri-
bution to evaluate the expectation of the logarithm of the complete-data likelihood
function, as a function of the parameters @, to give the function Q(6, 8°') defined
by

Q(0,0°) = Zp(zpc, 6°' In p(X, Z|6). (13.12)
7
At this point, it is convenient to introduce some notation. We shall use +(z,) to

denote the marginal posterior distribution of a latent variable z,,, and £(z,,—1, 2,,) to
denote the joint posterior distribution of two successive latent variables, so that

Yz,) = plza)X,0) (13.13)

(2 1,2n) = p(Zn_1,2,/X, 0. (13.14)

For each value of n, we can store 7(z, ) using a set of K nonnegative numbers
that sum to unity, and similarly we can store £(#,,_1, z,,) using a K x K matrix of
nonnegative numbers that again sum to unity. We shall also use v(z,) to denote the
conditional probability of z,, = 1, with a similar use of notation for £(z, 1 ;, Znk)

and for other probabilistic variables introduced later. Because the expectation of a
binary random variable is just the probability that it takes the value 1, we have

’}'(Z'H.A:) - E[Z-,,k} = Z '.}"(Z)Zn,,i\- (l 3.1 5)

k4

E(Zn—l,j-.znk) = E[anl,jznk]:Z’\/(z)znr~l,_j'zn,k:' (1316)

If we substitute the joint distribution p(X, Z|6) given by (13.10) into (13.12),
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and make use of the definitions of ~ and & , we obtain

K NP
Q(G,G()ld) — Z"Y(Z”ﬁ‘) lll?rk; JrZZZE(Z”'”lsJ!;:'”'k) 111/1‘]',!,;
k=1 n=2 j=1 k=1
N K
+ 0 A(zar) Inp(xal o). (13.17)
n=1 k=1

The goal of the E step will be to evaluate the quantities (z,,) and £(z,_,z, ) effi-
ciently, and we shall discuss this in detail shortly.

In the M step, we maximize Q(6,6°"") with respect to the parameters § =
{m. A, ¢} in which we treat v(z,,) and £(z,,_;, %, ) as constant. Maximization with
respect to 7 and A is easily achieved using appropriate Lagrange multipliers with
the results

m = ) (13.18)

K
Z ¥(215)

i=1

N
Z £(2n—1 e Z'H.A:)

Ajp = 2 : (13.19)

Z Z £(Zn— (R Z-,,,j)

=1 n=2

The EM algorithm must be initialized by choosing starting values for #« and A, which
should of course respect the summation constraints associated with their probabilis-
tic interpretation. Note that any elements of 7 or A that are set to zero initially will
remain zero in subsequent EM updates. A typical initialization procedure would
involve selecting random starting values for these parameters subject to the summa-
tion and non-negativity constraints, Note that no particular modification to the EM
results are required for the case of left-to-right models beyond choosing initial values
for the elements A ;;, in which the appropriate elements are set to zero, because these
will remain zero throughout.

To maximize Q(6,0°") with respect to ¢;,. we notice that only the final term
in (13.17) depends on ¢,,, and furthermore this term has exactly the same form as
the data-dependent term in the corresponding function for a standard mixture dis-
tribution for i.i.d. data, as can be seen by comparison with (9.40) for the case of a
Gaussian mixture. Here the quantities v(z,,,) are playing the role of the responsibil-
ities. If the parameters ¢,, are independent for the different components, then this
term decouples into a sum of terms one for each value of k, each of which can be
maximized independently. We are then simply maximizing the weighted log likeli-
hood function for the emission density p(x|¢,,) with weights +(z,%). Here we shall
suppose that this maximization can be done efficiently. For instance, in the case of
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Gaussian emission densities we have p(x|¢,) = N (x|py, Xj), and maximization

of the function Q(8,6°'") then gives

N
Z FY(ZV:,A:)X-H.

m, = 2— (13.20)

N

Z /(’ n.f.)

n=1

Z ¥ (Zk) (Xn = 3, ) (%0 — )
Zk o n=1

-~ (13.21)

Z n/(znk)

n=1

For the case of discrete multinomial observed variables, the conditional distribution
of the observations takes the form

DK
p(x|z) = [T [ i (1328)
i=1 k=1
and the corresponding M-step equations are given by
N
Z "V(Z.,L;\-:J.'I?W,{
pup = Epe——. (13.23)
D)
n=1

An analogous result holds for Bernoulli observed variables.

The EM algorithm requires initial values for the parameters of the emission dis-
tribution. One way to set these is first to treat the data initially as i.i.d. and fit the
emission density by maximum likelihood, and then use the resulting values to ini-
tialize the parameters for EM.

13.2.2 The forward-backward algorithm

Next we seek an efficient procedure for evaluating the quantities ~(z,,;) and
&(2n—1,5+ #ni), corresponding to the E step of the EM algorithm. The graph for the
hidden Markov model, shown in Figure 13.5, is a tree, and so we know that the
posterior distribution of the latent variables can be obtained efficiently using a two-
stage message passing algorithm. In the particular context of the hidden Markov
model, this is known as the forward-backward algorithm (Rabiner, 1989), or the
Baum-Welch algorithm (Baum, 1972). There are in fact several variants of the basic

algorithm, all of which lead to the exact marginals, according to the precise form of
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the messages that are propagated along the chain (Jordan, 2007). We shall focus on
the most widely used of these, known as the alpha-beta algorithm.

As well as being of great practical importance in its own right, the forward-
backward algorithm provides us with a nice illustration of many of the concepts
introduced in earlier chapters. We shall therefore begin in this section with a ‘con-
ventional” derivation of the forward-backward equations, making use of the sum
and product rules of probability, and exploiting conditional independence properties
which we shall obtain from the corresponding graphical model using d-separation.
Then in Section 13.2.3, we shall see how the forward-backward algorithm can be
obtained very simply as a specific example of the sum-product algorithm introduced
in Section 8.4.4.

Itis worth emphasizing that evaluation of the posterior distributions of the latent
variables is independent of the form of the emission density p(x|z) or indeed of
whether the observed variables are continuous or discrete. All we require is the
values of the quantities p(x,|z,) for each value of z,, for every n. Also, in this
section and the next we shall omit the explicit dependence on the model parameters
6°' because these fixed throughout.

We therefore begin by writing down the following conditional independence
properties (Jordan, 2007)

PX|z,) = px,...,X0|Z0)

P(Xpi1s-e o XN |20) (13.24)
PIXy, X X, 2n) = p(Xy, .. ,x.”_l|z”) (13.25)
pXiy o Xp1|Zn—1,2,) = p(x)  Xn—1]Zn—1) (13.26)
p(an ..... VXN |Zn, Zrng1) = P(Xnt1s.- o, XN|Zno) (13.27)
P(Xnto, - XN|Zp 1, K1) = p(Xngzs o XN Zntr) (13.28)

(X2 _1,2,) p(xl,....x“,1|zn 1)
P(Xn |20 )p(Xps1s - o XN |Z) (13.29)
pixvi|X,znva) = p(Xniilzas) (13.30)
p(zyplzn, X) = planii|zy) (13.31)
where X = {x,...,xy}. These relations are most easily proved using d-separation.

For instance in the first of these results, we note that every path from any one of the
nodes x;, ..., %, to the node x,, passes through the node z,,, which is observed.
Because all such paths are head-to-tail, it follows that the conditional independence
property must hold. The reader should take a few moments to verify each of these
properties in turn, as an exercise in the application of d-separation. These relations
can also be proved directly, though with significantly greater effort, from the joint
distribution for the hidden Markov model using the sum and product rules of proba-
bility.

Let us begin by evaluating ~(z,;). Recall that for a discrete multinomial ran-
dom variable the expected value of one of its components is just the probability of
that component having the value 1. Thus we are interested in finding the posterior
distribution p(z,,|x;,...,xx) of z, given the observed data set x;,....Xy. This
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represents a vector of length i whose entries correspond to the expected values of
Znk- Using Bayes’ theorem, we have

f)(X|Z'ra)l"(zvi )

() = p(a|X) = EEERE

[@1ee)
Note that the denominator p(X) is implicitly conditioned on the parameters §°'
of the HMM and hence represents the likelihood function. Using the conditional
independence property (13.24), together with the product rule of probability, we
obtain

'}'(Zn) _ p(xla <oy Ky Zw].)p(x'ra+l yoees ,XN|Zn_) _ Q:(Z-n)ﬁ(zn) (1333
p(X) p(X)
where we have defined
Q(Zn) = p(xlt"':xnuzn) (1334)
ﬁ(zn) = p(x"'l+11 cee -.Xlen)- (13.35)

The quantity a(z, ) represents the joint probability of observing all of the given
data up to time n and the value of z,, whereas J(z, ) represents the conditional
probability of all future data from time n + 1 up to N given the value of z,,. Again,
a(z,) and 3(z,) each represent set of K numbers, one for each of the possible
settings of the 1-of-K coded binary vector z,,. We shall use the notation a(zpk) tO
denote the value of a(z,,) when z,,; = 1, with an analogous interpretation of 3(Zak).

We now derive recursion relations that allow «(z,,) and 3(z, ) to be evaluated
efficiently. Again, we shall make use of conditional independence properties, in
particular (13.25) and (13.26), together with the sum and product rules, allowing us
to express a(z, ) in terms of a(z,,_1) as follows

a(z,) = p(X1,...,Xn.2%n)

= p(x1,...,Xn|Z0)p(Z0)

= p(xn|za)p(x1,- .- Xn 1|20 )p(Zn)

= p(Xn|Zn)p(X1, ..o Xn—1,Z0)

= p(xn|zs) Z P(X1y oy X1 Bp—1.2n)
Z 1

= p(x,|z,) Z PX1y s K12 % | 21 )P( B )
Zp—1

- p(xu‘zn) Z }')(Xl s Xp—1 |Z'n‘— 1 )P(Zu.‘zn.—— | )P(Zn— 1 )

Zn—1
= P(Xn|zn) Z P(Xl see s Xp—1y4n—1 )P(Z?'z|zw.f I)

Zp—1

Making use of the definition (13.34) for a(z,, ), we then obtain

o(#n) = p(xn|zn) Y (20 1)p(Znl201). (13.36)

Zn—1

Figure 13.12
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lllustration of the forward recursion (13.36) for v (z,_1,1) a(zn1)
evaluation of the o variables. In this fragment
of the lattice, we see that the quantity c(z.1)
is obtained by taking the elements a(z,_1 ;) of
a(zy,—1) at step n—1 and summing them up with
weights given by A;,, corresponding to the val-
ues of p(z,|z,—1), and then multiplying by the
data contribution p(x,.|zn1).

n—1 i)

It is worth taking a moment to study this recursion relation in some detail. Note
that there are /' terms in the summation, and the right-hand side has to be evaluated
for each of the I values of z,, so each step of the o recursion has computational
cost that scaled like O(K?). The forward recursion equation for a(z,,) is illustrated
using a lattice diagram in Figure 13.12.

In order to start this recursion, we need an initial condition that is given by

K
olz) = p(x1,21) = p(z)p(xi|21) = [ [ {map(xi]eby) } " (13.37)
k=1
which tells us that «(zy), for & = 1,..., K, takes the value mp(x,|¢,,). Starting

at the first node of the chain, we can then work along the chain and evaluate «o(z,,)
for every latent node. Because each step of the recursion involves multiplying by a
K x K matrix, the overall cost of evaluating these quantities for the whole chain is
of O(K2N).

We can similarly find a recursion relation for the quantities 3(z,,) by making
use of the conditional independence properties (13.27) and (13.28) giving

fa(z’ft) = p(x?'Hrl 3 XNlZn)
- ZP(XW+1>-"*xNyzn.-{-l|Zn)
Zn 41
= Z P(XW-H yoooy XN |Z‘I’M Zin+1 )P(Z-n,+:1. |Z-n,)
Zip 1
= Z p(x'ra.+l P st|Zn+l)p(z'n+1|zn)
Zp 1
— Z p(xﬂ.+Qe oy XN Zn+1)P(Xn+1 ‘zn+l)p(zn+'l |Z-n)-
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Figure 13.13

lllustration of the backward recursion 1
(13.38) for evaluation of the 73 variables. In s A, Al
this fragment of the lattice, we see that the . — | Ll
quantity 3(z.:) is obtained by taking the
components 3(z, 1) of 3(z,1) at step

n + 1 and summing them up with weights

given by the products of Ay, correspond-

ing to the values of p(z,, |z, ) and the cor-

responding values of the emission density * = 2 DA
'f)(xn‘zw-f—l,k:)- .

\ ]J(X” |Z'n.+] il )

B(Zn+41,2)

'\ p(xn |z'n,+ L,Z)

ﬁ(zn+1,3)

Xn |2n+1 ,3)

Making use of the definition (13.35) for 3(z,, ), we then obtain

B(zn) = Z B(Z11)P(X 1201 )0 (241 %) (13.38)

Zn41

Note that in this case we have a backward message passing algorithm that evaluates
3(2y,) in terms of 3(z,,,). At each step, we absorb the effect of observation x,, .
through the emission probability p(x,, 1|2, 1), multiply by the transition matrix
P(%n 1|2, ), and then marginalize out Zp1. This is illustrated in Figure 13.13.

Again we need a starting condition for the recursion, namely a value for B(zn).
This can be obtained by setting n = N in (13.33) and replacing o(zy) with its
definition (13.34) to give

p(X,zn)B(zy)
p(X)
which we see will be correct provided we take 3(zx) = 1 for all settings of z .

In the M step equations, the quantity p(X) will cancel out, as can be seen, for
instance, in the M-step equation for g, given by (13.20), which takes the form

plzn]|X) = (13.39)

n n
Z 'T(anc)xn Z O"(Z-rak)ﬁ(znk )Xn
=1 —
Kty = . n == 711 ) “340)

Z nf(z?i‘f\*) Z ”(z'nfs:)ﬁ(zn.k:)

=1 n=1
However, the quantity p(X) represents the likelihood function whose value we typ-
ically wish to monitor during the EM optimization, and so it is useful to be able to

evaluate it. If we sum both sides of (13.33) over z,,. and use the fact that the left-hand
side i1s a normalized distribution, we obtain

PX) =Y a(z,)A(z). (13.41)

Zn
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Thus we can evaluate the likelihood function by computing this sum, for any conve-
nient choice of n. For instance, if we only want to evaluate the likelihood function,
then we can do this by running the «v recursion from the start to the end of the chain,
and then use this result for n = N, making use of the fact that 3(zy) is a vector of
Is. In this case no /3 recursion is required, and we simply have

p(X) = alzn). (13.42)

ZN

Let us take a moment to interpret this result for p(X). Recall that to compute the
likelihood we should take the joint distribution p(X, Z) and sum over all possible
values of Z. Each such value represents a particular choice of hidden state for every
time step, in other words every term in the summation is a path through the lattice
diagram, and recall that there are exponentially many such paths. By expressing
the likelihood function in the form (13.42), we have reduced the computational cost
from being exponential in the length of the chain to being linear by swapping the
order of the summation and multiplications, so that at each time step n we sum
the contributions from all paths passing through each of the states z,; to give the
intermediate quantities ov(z,, ).

Next we consider the evaluation of the quantities £(z,,_, #,, ), which correspond
to the values of the conditional probabilities p(z,, 1, 2,|X) for each of the K x K
settings for (z,_,%,). Using the definition of £(z,, ., %,), and applying Bayes’
theorem, we have

E(Z)L—lr Zn) = p(zn—l-. Z‘H,JX)
p{Xlzn—I«. zn)p(zn—l s Zn)

p(X)
_ (X X |20 )P0 |Z0)P (K1 - XN |Z0)P(Z0 |20 1) P(Z0 1)
p(X)
&(an 1 )P(Xn |Z-n)p(znlznf 1 )ﬁ(zn)
13.43
p(X) ( )

where we have made use of the conditional independence property (13.29) together
with the definitions of «(z,, ) and 3(z,,) given by (13.34) and (13.35). Thus we can
calculate the £(z,,, %, ) directly by using the results of the o and [ recursions.
Let us summarize the steps required to train a hidden Markov model using
the EM algorithm. We first make an initial selection of the parameters 8! where
6 = (m,A,¢). The A and 7 parameters are often initialized either uniformly or
randomly from a uniform distribution (respecting their non-negativity and summa-
tion constraints). Initialization of the parameters ¢ will depend on the form of the
distribution. For instance in the case of Gaussians, the parameters gs;, might be ini-
tialized by applying the /A'-means algorithm to the data, and 3; might be initialized
to the covariance matrix of the corresponding K means cluster. Then we run both
the forward ev recursion and the backward /3 recursion and use the results to evaluate
(2, ) and &(z,_1,%,). At this stage, we can also evaluate the likelihood function.
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13.12

This completes the E step, and we use the results to find a revised set of parameters
0"°" using the M-step equations from Section 13.2.1. We then continue to alternate
between E and M steps until some convergence criterion is satisfied, for instance
when the change in the likelihood function is below some threshold.

Note that in these recursion relations the observations enter through conditional
distributions of the form p(x,|z,). The recursions are therefore independent of
the type or dimensionality of the observed variables or the form of this conditional
distribution, so long as its value can be computed for each of the K possible states
of z,,. Since the observed variables {x,,} are fixed, the quantities p(x,, |, ) can be
pre-computed as functions of z,, at the start of the EM algorithm, and remain fixed
throughout.

We have seen in earlier chapters that the maximum likelihood approach is most
effective when the number of data points is large in relation to the number of parame-
ters. Here we note that a hidden Markov model can be trained effectively, using max-
imum likelihood, provided the training sequence is sufficiently long. Alternatively,
we can make use of multiple shorter sequences, which requires a straightforward
modification of the hidden Markov model EM algorithm. In the case of lefi-to-right
models, this is particularly important because, in a given observation sequence, a
given state transition corresponding to a nondiagonal element of A will seen at most
once.

Another quantity of interest is the predictive distribution, in which the observed
datais X = {x;,...,xy} and we wish to predict x , , which would be important
for real-time applications such as financial forecasting. Again we make use of the
sum and product rules together with the conditional independence properties (13.29)
and (13.31) giving

PO ilX) = Y p(xni,zn|X)

BN 41

= > plxniilzn)p(zna|X)
ZN+1

- Zp(XN+1JZN+|)Zp(ZN+1aZN|X)
ZN 1 ZN

= D plxnialza i) Y planlzn)p(zy | X)
ZN 4 ZN

. ‘p(Z]\“X)

= P(XM-I\ZNH) P(ZN Y N ey e
zg;l ; ‘|‘1‘ ) ])(X)
1

= nglp(xmmmgz)(zN+.|zN)fx(zN«) (13.44)

which can be evaluated by first running a forward « recursion and then computing
the final summations over zx and zx ;. The result of the first summation over 7N
can be stored and used once the value of xx is observed in order to run the o
recursion forward to the next step in order to predict the subsequent value X2

Figure 13.14 A fragment of the fac-
tor graph representation for the hidden .
Markov model.

Section 10.1

Section 8.4.4
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Note that in (13.44), the influence of all data from x; to x; is summarized in the K
values of «v(z ). Thus the predictive distribution can be carried forward indefinitely
using a fixed amount of storage, as may be required for real-time applications.

Here we have discussed the estimation of the parameters of an HMM using max-
imum likelihood. This framework is easily extended to regularized maximum likeli-
hood by introducing priors over the model parameters 7r, A and ¢ whose values are
then estimated by maximizing their posterior probability. This can again be done us-
ing the EM algorithm in which the E step is the same as discussed above, and the M
step involves adding the log of the prior distribution p(8) to the function (0, 8°'%)
before maximization and represents a straightforward application of the techniques
developed at various points in this book. Furthermore, we can use variational meth-
ods to give a fully Bayesian treatment of the HMM in which we marginalize over the
parameter distributions (MacKay, 1997). As with maximum likelihood, this leads to
a two-pass forward-backward recursion to compute posterior probabilities.

13.2.3 The sum-product algorithm for the HMM

The directed graph that represents the hidden Markov model, shown in Fig-
ure 13.5, is a tree and so we can solve the problem of finding local marginals for the
hidden variables using the sum-product algorithm. Not surprisingly, this turns out to
be equivalent to the forward-backward algorithm considered in the previous section,
and so the sum-product algorithm therefore provides us with a simple way to derive
the alpha-beta recursion formulae.

We begin by transforming the directed graph of Figure 13.5 into a factor graph,
of which a representative fragment is shown in Figure 13.14. This form of the fac-
tor graph shows all variables, both latent and observed, explicitly. However, for
the purpose of solving the inference problem, we shall always be conditioning on
the variables x1, ..., X, and so we can simplify the factor graph by absorbing the
emission probabilities into the transition probability factors. This leads to the sim-
plified factor graph representation in Figure 13.15, in which the factors are given
by

hzi) = plzi)p(xi|z:1) (13.45)
f'rt(znf_lazn) = p(znlzn.—l)p(xn‘Zn)- (13.46)
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Figure 13.15 A simplified form of fac- j,

model.

tor graph to describe the hidden Markov ._O‘ ..... : In :

To derive the alpha-beta algorithm, we denote the final hidden variable Zyn as
the root node, and first pass messages from the leaf node A to the root. From the
general results (8.66) and (8.69) for message propagation, we see that the messages
which are propagated in the hidden Markov model take the form

/'Lz'ri—\_*fn (Zn*l) = Ju"fn-- 1B 1 (Zﬂ.-l) (1347)
M fn—azy (Z’!L) - Z fn(znfla zn)nuanl-*.fn (anl) (13.48)

These equations represent the propagation of messages forward along the chain and
are equivalent to the alpha recursions derived in the previous section, as we shall
now show. Note that because the variable nodes z,, have only two neighbours, they
perform no computation.

. We can eliminate pt,, | .y, (z,_) from (13.48) using (13.47) to give a recur-
sion for the [ — 2 messages of the form

Hfn—ay (Z,,,,) - Z .fn (Z'n— 1, Zn,)}'l'-l,"“ | (Z,,, ] ) ( 1149)

If we now recall the definition (13.46), and if we define

&(2n) = iy, —m, (%) (13.50)

then we obtain the alpha recursion given by (13.36). We also need to verify that
-the quantities «(z,) are themselves equivalent to those defined previously. This
is easily done by using the initial condition (8.71) and noting that a(z) is given
by h(z:) = p(zi)p(x1]z;) which is identical to (13.37). Because the initial « is
the same, and because they are iteratively computed using the same equation, all
subsequent «v quantities must be the same.

Next we consider the messages that are propagated from the root node back to
the leaf node. These take the form

Hfg HJ":..(ZH) = Z f-n-&— 1 (Z-n.~ Zn.+|)ln’-',",,__‘_z_._,r” o (Zl,,+1) (13.51)

Zip 41

whﬁl:re, as before, we have eliminated the messages of the type z — f since the
Yarlgble nodes perform no computation. Using the definition (13.46) to substitute
for fui1(2n, 2,41 ), and defining

H2zn) = pif, 12, (20) (13.52)

Exercise 13.11
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we obtain the beta recursion given by (13.38). Again, we can verify that the beta
variables themselves are equivalent by noting that (8.70) implies that the initial mes-
sage send by the root variable node is i, sy (zn) = 1, which is identical to the
initialization of J(zx) given in Section 13.2.2.

The sum-product algorithm also specifies how to evaluate the marginals once all
the messages have been evaluated. In particular, the result (8.63) shows that the local
marginal at the node z,, is given by the product of the incoming messages. Because

we have conditioned on the variables X = {x,..., x‘\n}, we are computing the
joint distribution
(20, X) = pif, —am (B ) f sy 2 (Bn) = (Z0,) 3 (Zn)- (13.53)

Dividing both sides by p(X). we then obtain

in agreement with (13.33). The result (13.43) can similarly be derived from (8.72).

13.2.4 Scaling factors

There is an important issue that must be addressed before we can make use of the
forward backward algorithm in practice. From the recursion relation (13.36), we note
that at each step the new value «v(z,,) is obtained from the previous value cx(z, 1)
by multiplying by quantities p(z, |z, 1) and p(x,,|2,, ). Because these probabilities
are often significantly less than unity, as we work our way forward along the chain,
the values of a(z,) can go to zero exponentially quickly. For moderate lengths of
chain (say 100 or so0), the calculation of the a(z,) will soon exceed the dynamic
range of the computer, even if double precision floating point is used.

In the case of i.i.d. data, we implicitly circumvented this problem with the eval-
uation of likelihood functions by taking logarithms. Unfortunately, this will not help
here because we are forming sums of products of small numbers (we are in fact im-
plicitly summing over all possible paths through the lattice diagram of Figure 13.7).
We therefore work with re-scaled versions of «(z,,) and 3(z,, ) whose values remain
of order unity. As we shall see, the corresponding scaling factors cancel out when
we use these re-scaled quantities in the EM algorithm.,

In (13.34), we defined a(z,,) = p(x1,...,Xn,2,) representing the joint distri-
bution of all the observations up to x,, and the latent variable z,,. Now we define a
normalized version of « given by

R (l’-(zﬂ)
n) = ] yereyXp ) = ———+ 13‘55
a(zn) = plzn|x1, X P(Xpy Xp) ( :

which we expect to be well behaved numerically because it is a probability distribu-
tion over K variables for any value of n. In order to relate the scaled and original al-
pha variables, we introduce scaling factors defined by conditional distributions over

the observed variables
Cn = P(Xp|X1,. ..y Xpo1)- (13.56)
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13.15

From the product rule, we then have

n

P(Xu cees X-,,} = H Cm (13.57)
m=1
and so
n
o(zn) = plan|x1,. .., x)p(x1,. .. X0) = (H p> a(zy,). (13.58)
m=1

We can then turn the recursion equation (13.36) for « into one for & given by
Cna(zn) = p(XnIZn) Z a(znfl)p(znbn—l)- (13.59)

Note that at each stage of the forward message passing phase, used to evaluate & (z,,),
we have to evaluate and store ¢,,, which is easily done because it is the coefficient
that normalizes the right-hand side of (13.59) to give &(z,, ).

We can similarly define re-scaled variables 3(z,, ) using

N
Blan) = ( H f) H(zn) (13.60)

m=n+1

whichAwill again remain within machine precision because, from (13.35), the quan-
tities 3(z,,) are simply the ratio of two conditional probabilities

~ Xntls - XN|Bn
Blzy) = P(Xn+y wlzn) (13.61)
p(xn+1:- . :XN|X17< .- :Xn)

The recursion result (13.38) for /3 then gives the following recursion for the re-scaled
variables

C’ﬂ+18 zn) Z B ZnJrl)p(X:n+1'Zn+1)p(zn+l|zn) (13.62)

Zin 1

In applying this recursion relation, we make use of the scaling factors ¢,, that were
previously computed in the « phase.
From (13.57), we see that the likelihood function can be found using

N

p(X) =[] en- (13.63)

n=1

Similarly, usmg (13.33) and (13.43), together with (13.63), we see that the required
marginals are given by

Y(zn) = &(22)5(zn) (13.64)
g(zn—lazn) = Cna(zn—l)p(xn|Zn)p(szZ71)B(Zn). (13.65)

Section 13.3
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Finally, we note that there is an alternative formulation of the forward-backward
algorithm (Jordan, 2007) in which the backward pass is defined by a recursion based
the quantities v(z, ) = o ,,)p’{z,,) instead of using | ”J’(z,,) This a—y recursion
requires that the forward pass be completed first so that all the quantities & (z,,)
are available for the backward pass, whereas the forward and backward passes of
the a—@ algorithm can be done independently. Although these two algorithms have
comparable computational cost, the o—/7 version is the most commonly encountered
one in the case of hidden Markov models, whereas for linear dynamical systems a
recursion analogous to the av—y form is more usual.

13.2.5 The Viterbi algorithm

In many applications of hidden Markov models, the latent variables have some
meaningful interpretation, and so it is often of interest to find the most probable
sequence of hidden states for a given observation sequence. For instance in speech
recognition, we might wish to find the most probable phoneme sequence for a given
series of acoustic observations. Because the graph for the hidden Markov model is
a directed tree, this problem can be solved exactly using the max-sum algorithm.
We recall from our discussion in Section 8.4.5 that the problem of finding the most
probable sequence of latent states is not the same as that of finding the set of states
that are individually the most probable. The latter problem can be solved by first
running the forward-backward (sum-product) algorithm to find the latent variable
marginals 7(z,, ) and then maximizing each of these individually (Duda et al., 2001).
However, the set of such states will not, in general, correspond to the most probable
sequence of states. In fact, this set of states might even represent a sequence having
zero probability, if it so happens that two successive states, which in isolation are
individually the most probable, are such that the transition matrix element connecting
them is zero.

In practice, we are usually interested in finding the most probable sequence of
states, and this can be solved efficiently using the max-sum algorithm, which in the
context of hidden Markov models is known as the Viterbi algorithm (Viterbi, 1967).
Note that the max-sum algorithm works with log probabilities and so there is no
need to use re-scaled variables as was done with the forward-backward algorithm.
Figure 13.16 shows a fragment of the hidden Markov model expanded as lattice
diagram. As we have already noted, the number of possible paths through the lattice
grows exponentially with the length of the chain. The Viterbi algorithm searches this
space of paths efficiently to find the most probable path with a computational cost
that grows only linearly with the length of the chain.

As with the sum-product algorithm, we first represent the hidden Markov model
as a factor graph, as shown in Figure 13.15. Again, we treat the variable node z
as the root, and pass messages to the root starting with the leaf nodes. Using the
results (8.93) and (8.94), we see that the messages passed in the max-sum algorithm
are given by

l"'zrl."_f-f-:---l(zn') lufar_’Zn(Zn) (13 66)
)U'fnTl —Zni1 (Z'rc+1) = max { n fn - 1(Zn-‘ Zn+1) + Juzﬂgrj}wﬂ Zn)} (] 3. 67)

Zn
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Figure 13.16 A fragment of the HMM lattice

A J

showing two possible paths. The Viterbi algorithm
efficiently determines the most probable path from . — | D D D 5o
amongst the exponentially many possibilities. For
any given path, the corresponding probability is
given by the product of the elements of the tran-
sition matrix A;,, corresponding to the probabil-

ities p(z,1]2.) for each segment of the path,
along with the emission densities p(x,|k) asso- k =2
ciated with each node on the path.

FExercise 13.16

k=23
n—2 n—1 7 n+1

If we eliminate jt,,, ., ., () between these two equations, and make use of (13.46),
we obtain a recursion for the f — z messages of the form

W(Zni1) = p(Xn1|Zair) + max {Inp(xyy|z,) + w(z,)} (13.68)

where we have introduced the notation w(z,,) = fif, .z, (Zn).

T

From (8.95) and (8.96), these messages are initialized using
w(zy) = Inplz) + Inp(x;|z). (13.69)

where we have used (13.45). Note that to keep the notation uncluttered, we omit
the dependence on the model parameters @ that are held fixed when finding the most
probable sequence.

The Viterbi algorithm can also be derived directly from the definition (13.6) of
the joint distribution by taking the logarithm and then exchanging maximizations
and summations. It is easily seen that the quantities w(z,,) have the probabilistic
interpretation

W(z,) = max p(Xi,.. ., XKy Bl Zp ). (13.70)
Zif By —1

Once we have completed the final maximization over zu, we will obtain the
value of the joint distribution p(X, Z) corresponding to the most probable path. We
also wish to find the sequence of latent variable values that corresponds to this path.
To do this, we simply make use of the back-tracking procedure discussed in Sec-
tion 8.4.5. Specifically, we note that the maximization over z,, must be performed
for each of the K possible values of z,,,,. Suppose we keep a record of the values
of z,, that correspond to the maxima for each value of the K values of z,, ;1. Let us
denote this function by /(%,) where k& € {1,..., K'}. Once we have passed mes-
sages to the end of the chain and found the most probable state of z, we can then
use this function to backtrack along the chain by applying it recursively

ke = (k) (13.71)
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Intuitively, we can understand the Viterbi algorithm as follows. Naively, we
could consider explicitly all of the exponentially many paths through the lattice,
evaluate the probability for each, and then select the path having the highest proba-
bility. However, we notice that we can make a dramatic saving in computational cost
as follows. Suppose that for each path we evaluate its probability by summing up
products of transition and emission probabilities as we work our way forward along
each path through the lattice. Consider a particular time step n and a particular state
k at that time step. There will be many possible paths converging on the correspond-
ing node in the lattice diagram. However, we need only retain that particular path
that so far has the highest probability. Because there are & states at time step n. we
need to keep track of K such paths. At time step n + 1, there will be K2 possible
paths to consider, comprising K possible paths leading out of each of the /& current
states, but again we need only retain K of these corresponding to the best path for
each state at time n+ 1. When we reach the final time step N we will discover which
state corresponds to the overall most probable path. Because there is a unique path
coming into that state we can trace the path back to step N — 1 to see what state it
occupied at that time, and so on back through the lattice to the state n = 1.

13.2.6 Extensions of the hidden Markov model

The basic hidden Markov model, along with the standard training algorithm
based on maximum likelihood, has been extended in numerous ways to meet the
requirements of particular applications. Here we discuss a few of the more important
examples.

We see from the digits example in Figure 13.11 that hidden Markov models can
be quite poor generative models for the data, because many of the synthetic digits
look quite unrepresentative of the training data. If the goal is sequence classifica-
tion, there can be significant benefit in determining the parameters of hidden Markov
models using discriminative rather than maximum likelihood techniques. Suppose
we have a training set of 12 observation sequences X,., where »r = 1, ..., i, each of
which is labelled according to its class m, where i = 1, ..., M. For each class, we
have a separate hidden Markov model with its own parameters 6,,,, and we treat the
problem of determining the parameter values as a standard classification problem in
which we optimize the cross-entropy

I
Z Inp(m,.|X,.). (13.72)

r=1

Using Bayes’ theorem this can be expressed in terms of the sequence probabilities
associated with the hidden Markov models

R
n p(X, |6, )p(m,)
2 {Z;‘i, p(X100)p(lr) } (13.73)

=1

where p(m) is the prior probability of class m. Optimization of this cost function
is more complex than for maximum likelihood (Kapadia, 1998), and in particular
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Figure 13.17 Section of an autoregressive hidden Zp—1 Zp Zn41

Markov model, in which the distribution
of the observation x, depends on a
subset of the previous observations as
well as on the hidden state z,,. In this
example, the distribution of x,, depends
on the two previous observations x,,
and x,, 2.

requires that every training sequence be evaluated under each of the models in or-
der to compute the denominator in (13.73). Hidden Markov models, coupled with
discriminative training methods, are widely used in speech recognition (Kapadia,
1998).

A significant weakness of the hidden Markov model is the way in which it rep-
resents the distribution of times for which the system remains in a given state. To see
the problem, note that the probability that a sequence sampled from a given hidden
Markov model will spend precisely 1" steps in state & and then make a transition to a
different state is given by

P(T) = (Ape) ™ (1 — Apy) o< exp (=T In Agy) (13.74)

and so is an exponentially decaying function of 7. For many applications, this will
be a very unrealistic model of state duration. The problem can be resolved by mod-
elling state duration directly in which the diagonal coefficients Ay, are all set to zero,
and each state £ is explicitly associated with a probability distribution p(7T'|k) of pos-
sible duration times. From a generative point of view, when a state k is entered, a
value 7" representing the number of time steps that the system will remain in state &
is then drawn from p(T"|k). The model then emits T values of the observed variable
Xy, which are generally assumed to be independent so that the corresponding emis-
sion density is simply Htl:l p(x:|k). This approach requires some straightforward
modifications to the EM optimization procedure (Rabiner, 1989).

Another limitation of the standard HMM is that it is poor at capturing long-
range correlations between the observed variables (i.e., between variables that are
separated by many time steps) because these must be mediated via the first-order
Markov chain of hidden states. Longer-range effects could in principle be included
by adding extra links to the graphical model of Figure 13.5. One way to address this
is to generalize the HMM to give the autoregressive hidden Markov model (Ephraim
et al., 1989), an example of which is shown in Figure 13.17. For discrete observa-
tions, this corresponds to expanded tables of conditional probabilities for the emis-
sion distributions. In the case of a Gaussian emission density, we can use the linear-
Gaussian framework in which the conditional distribution for x,, given the values
of the previous observations, and the value of z,, is a Gaussian whose mean is a
linear combination of the values of the conditioning variables. Clearly the number
of additional links in the graph must be limited to avoid an excessive the number of
free parameters. In the example shown in Figure 13.17, each observation depends on
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Figure 13.18 Example of an input-output hidden Up—1 uy, Up 41

Exercise

13.18

Markov model. In this case, both the
emission probabilities and the transition
probabilities depend on the values of a
sequence of observations u,, ..., uy.

the two preceding observed variables as well as on the hidden state. Although this
eraph looks messy, we can again appeal to d-separation to see that in fact it still has
a simple probabilistic structure. In particular, if we imagine conditioning on z,, we
see that, as with the standard HMM, the values of z,,_, and 2, are independent,
corresponding to the conditional independence property (13.5). This is easily veri-
fied by noting that every path from node z,,_, to node z,,, passes through at least
one observed node that is head-to-tail with respect to that path. As a consequence,
we can again use a forward-backward recursion in the E step of the EM algorithm to
determine the posterior distributions of the latent variables in a computational time
that is linear in the length of the chain. Similarly, the M step involves only a minor
modification of the standard M-step equations. In the case of Gaussian emission
densities this involves estimating the parameters using the standard linear regression
equations, discussed in Chapter 3,

We have seen that the autoregressive HMM appears as a natural extension of the
standard HMM when viewed as a graphical model. In fact the probabilistic graphical
modelling viewpoint motivates a plethora of different graphical structures based on
the HMM. Another example is the input-outpur hidden Markov model (Bengio and
Frasconi, 1995), in which we have a sequence of observed variables u, ..., uy, in
addition to the output variables x. ..., x, whose values influence either the dis-
tribution of latent variables or output variables, or both. An example is shown in
Figure 13.18. This extends the HMM framework to the domain of supervised learn-
ing for sequential data. It is again easy to show, through the use of the d-separation
criterion, that the Markov property (13.5) for the chain of latent variables still holds.
To verify this, simply note that there is only one path from node z,, | to node 2,
and this is head-to-tail with respect to the observed node z,,. This conditional inde-
pendence property again allows the formulation of a computationally efficient learn-
ing algorithm. In particular, we can determine the parameters @ of the model by
maximizing the likelihood function L(€) = p(X|U, @) where U is a matrix whose
rows are given by u'. As a consequence of the conditional independence property
(13.5) this likelihood function can be maximized efficiently using an EM algorithm
in which the E step involves forward and backward recursions.

Another variant of the HMM worthy of mention is the factorial hidden Markov
model (Ghahramani and Jordan, 1997), in which there are multiple independent
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Figure 13.19

Figure 13.20

A factorial hidden Markov model com-
prising two Markov chains of latent vari-
ables. For continuous observed variables
x, one possible choice of emission model
is a linear-Gaussian density in which the
mean of the Gaussian is a linear combi-
nation of the states of the corresponding
latent variables.

(2) 2
L ZE.-Q) ZI(H)-J

Markov chains of latent variables, and the distribution of the observed variable at
a given time step is conditional on the states of all of the corresponding latent vari-
ables at that same time step. Figure 13.19 shows the corresponding graphical model.
The motivation for considering factorial HMM can be seen by noting that in order to
represent, say, 10 bits of information at a given time step, a standard HMM would
need K = 2'Y = 1024 latent states, whereas a factorial HMM could make use of 10
binary latent chains. The primary disadvantage of factorial HMMs, however, lies in
the additional complexity of training them. The M step for the factorial HMM model
is straightforward. However, observation of the x variables introduces dependencies
between the latent chains, leading to difficulties with the E step. This can be seen
by noting that in Figure 13.19, the variables zf,,l) and 2" are connected by a path
which is head-to-head at node x,, and hence they are not d-separated. The exact E
step for this model does not correspond to running forward and backward recursions
along the A Markov chains independently. This is confirmed by noting that the key
conditional independence property (13.5) is not satisfied for the individual Markov
chains in the factorial HMM model, as is shown using d-separation in Figure 13.20.
Now suppose that there are M chains of hidden nodes and for simplicity suppose
that all latent variables have the same number A of states. Then one approach would
be to note that there are K combinations of latent variables at a given time step

Example of a path, highlighted in green,
which is head-to-head at the observed
nodes x,_1 and x,1, and head-to-tail

at the unobserved nodes z'” |, z'? and

z!’! . Thus the path is not blocked and
so the conditional independence property
(13.5) does not hold for the individual la-
tent chains of the factorial HMM model.
As a consequence, there is no efficient

exact E step for this model.

Section 10.1
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and so we can transform the model into an equivalent standard HMM having a single
chain of latent variables each of which has K™ latent states. We can then run the
standard forward-backward recursions in the E step. This has computational com-
plexity O(N K2 that is exponential in the number A4 of latent chains and so will
be intractable for anything other than small values of M. One solution would be
to use sampling methods (discussed in Chapter 11). As an elegant deterministic al-
ternative, Ghahramani and Jordan (1997) exploited variational inference techniques
to obtain a tractable algorithm for approximate inference. This can be done using
a simple variational posterior distribution that is fully factorized with respect to the
latent variables, or alternatively by using a more powerful approach in which the
variational distribution is described by independent Markov chains corresponding to
the chains of latent variables in the original model. In the latter case, the variational
inference algorithms involves running independent forward and backward recursions
along each chain, which is computationally efficient and yet is also able to capture
correlations between variables within the same chain.

Clearly, there are many possible probabilistic structures that can be constructed
according to the needs of particular applications. Graphical models provide a general
technique for motivating, describing, and analysing such structures, and variational
methods provide a powerful framework for performing inference in those models for
which exact solution is intractable.

Linear Dynamical Systems

In order to motivate the concept of linear dynamical systems, let us consider the
following simple problem, which often arises in practical settings. Suppose we wish
to measure the value of an unknown quantity z using a noisy sensor that returns a
observation x representing the value of z plus zero-mean Gaussian noise. Given a
single measurement, our best guess for z is to assume that z = x. However, we
can improve our estimate for z by taking lots of measurements and averaging them,
because the random noise terms will tend to cancel each other. Now let’s make the
situation more complicated by assuming that we wish to measure a quantity z that
is changing over time. We can take regular measurements of x so that at some point
in time we have obtained x, ..., xy and we wish to find the corresponding values
71, ..., xy. If we simply average the measurements, the error due to random noise
will be reduced, but unfortunately we will just obtain a single averaged estimate, in
which we have averaged over the changing value of z, thereby introducing a new
source of error,

Intuitively, we could imagine doing a bit better as follows. To estimate the value
of z, we take only the most recent few measurements, say Xy _,....xy and just
average these. I z is changing slowly, and the random noise level in the sensor is
high, it would make sense to choose a relatively long window of observations to
average. Conversely, if the signal is changing quickly, and the noise levels are small,
we might be better just to use x directly as our estimate of zx. Perhaps we could
do even better if we take a weighted average, in which more recent measurements
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make a greater contribution than less recent ones.

Although this sort of intuitive argument seems plausible, it does not tell us how
to form a weighted average, and any sort of hand-crafted weighing is hardly likely
to be optimal. Fortunately, we can address problems such as this much more sys-
tematically by defining a probabilistic model that captures the time evolution and
measurement processes and then applying the inference and learning methods devel-
oped in earlier chapters. Here we shall focus on a widely used model known as a
linear dynamical system.

As we have seen, the HMM corresponds to the state space model shown in
Figure 13.5 in which the latent variables are discrete but with arbitrary emission
probability distributions. This graph of course describes a much broader class of
probability distributions, all of which factorize according to (13.6). We now consider
extensions to other distributions for the latent variables. In particular, we consider
continuous latent variables in which the summations of the sum-product algorithm
become integrals. The general form of the inference algorithms will, however, be
the same as for the hidden Markov model. It is interesting to note that, historically,
hidden Markov models and linear dynamical systems were developed independently.
Once they are both expressed as graphical models, however, the deep relationship
between them immediately becomes apparent.

One key requirement is that we retain an efficient algorithm for inference which
is linear in the length of the chain. This requires that, for instance, when we take
a quantity oz, ), representing the posterior probability of z,, given observations
X1, ..., Xy, and multiply by the transition probability p(z, |z, ) and the emission
probability p(x,,|2, ) and then marginalize over z,,_, we obtain a distribution over
z,, that is of the same functional form as that over a(z,_1). That is to say, the
distribution must not become more complex at each stage, but must only change in
its parameter values. Not surprisingly, the only distributions that have this property
of being closed under multiplication are those belonging to the exponential family.

Here we consider the most important example from a practical perspective,
which is the Gaussian. In particular, we consider a linear-Gaussian state space model
so that the latent variables {z,,}, as well as the observed variables {x,, }, are multi-
variate Gaussian distributions whose means are linear functions of the states of their
parents in the graph. We have seen that a directed graph of linear-Gaussian units
is equivalent to a joint Gaussian distribution over all of the variables. Furthermore,
marginals such as &(z,,) are also Gaussian, so that the functional form of the mes-
sages is preserved and we will obtain an efficient inference algorithm. By contrast,
suppose that the emission densities p(x,,|%,,) comprise a mixture of K Gaussians
each of which has a mean that is linear in z,,. Then even if &(z;) is Gaussian, the
quantity a(z,) will be a mixture of K Gaussians, a(z3) will be a mixture of K
Gaussians, and so on, and exact inference will not be of practical value.

We have seen that the hidden Markoyv model can be viewed as an extension of
the mixture models of Chapter 9 to allow for sequential correlations in the data.
In a similar way, we can view the linear dynamical system as a generalization of the
continuous latent variable models of Chapter 12 such as probabilistic PCA and factor
analysis. Each pair of nodes {z,,x,,} represents a linear-Gaussian latent variable

Exercise 13.19

Exercise

13.24
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model for that particular observation. However, the latent variables {z,,} are no
longer treated as independent but now form a Markov chain.

Because the model is represented by a tree-structured directed graph, inference
problems can be solved efficiently using the sum-product algorithm. The forward re-
cursions, analogous to the ov messages of the hidden Markov model, are known as the
Kalman filter equations (Kalman, 1960; Zarchan and Musoff, 2005), and the back-
ward recursions, analogous to the /5 messages, are known as the Kalman smoother
equations, or the Rauch-Tung-Striebel (RTS) equations (Rauch et al., 1965). The
Kalman filter is widely used in many real-time tracking applications.

Because the linear dynamical system is a linear-Gaussian model, the joint distri-
bution over all variables, as well as all marginals and conditionals, will be Gaussian.
It follows that the sequence of individually most probable latent variable values is
the same as the most probable latent sequence. There is thus no need to consider the
analogue of the Viterbi algorithm for the linear dynamical system.

Because the model has linear-Gaussian conditional distributions, we can write
the transition and emission distributions in the general form

p(zn‘zn—l) = N(Zn|AZ-rL—1-.r) (13.75)
p(xnlzn) = N(x./Cz,,X). (13.76)

The initial latent variable also has a Gaussian distribution which we write as
p(z1) = N(z1|pg, Vo). (13.77)

Note that in order to simplify the notation, we have omitted additive constant terms
from the means of the Gaussians. In fact, it is straightforward to include them if
desired. Traditionally, these distributions are more commonly expressed in an equiv-
alent form in terms of noisy linear equations given by

Zy, = AZ,_ 1+ W, (13.78)
%X, = Czy,+v, (13.79)
Z; = py+u (13.80)

where the noise terms have the distributions

w ~ N(wl0,T) (13.81)
v o~ N(V|0,T) (13.82)
u ~ N(ulo,Vy). (13.83)

The parameters of the model, denoted by @ = {A, T, C, X, i, Vi }, can be
determined using maximum likelihood through the EM algorithm. In the E step, we
need to solve the inference problem of determining the local posterior marginals for
the latent variables, which can be solved efficiently using the sum-product algorithm,
as we discuss in the next section.
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13.3.1 Inference in LDS

We now turn to the problem of finding the marginal distributions for the latent
variables conditional on the observation sequence. For given parameter settings, we
also wish to make predictions of the next latent state z,, and of the next observation
x,, conditioned on the observed data x, ..., x,,_ for use in real-time applications.
These inference problems can be solved efficiently using the sum-product algorithm,
which in the context of the linear dynamical system gives rise to the Kalman filter
and Kalman smoother equations.

It is worth emphasizing that because the linear dynamical system is a linear-
Gaussian model, the joint distribution over all latent and observed variables is simply
a Gaussian, and so in principle we could solve inference problems by using the
standard results derived in previous chapters for the marginals and conditionals of a
multivariate Gaussian. The role of the sum-product algorithm is to provide a more
efficient way to perform such computations.

Linear dynamical systems have the identical factorization, given by (13.6), to
hidden Markov models, and are again described by the factor graphs in Figures 13.14
and 13.15. Inference algorithms therefore take precisely the same form except that
summations over latent variables are replaced by integrations. We begin by consid-
ering the forward equations in which we treat zy as the root node, and propagate
messages from the leaf node h(z, ) to the root. From (13.77), the initial message will
be Gaussian, and because each of the factors is Gaussian, all subsequent messages
will also be Gaussian. By convention, we shall propagate messages that are nor-
malized marginal distributions corresponding to p(z,|x1, ..., x, ), which we denote
by

a(zn) = N(z, |1, V). (13.84)

This is precisely analogous to the propagation of scaled variables a(z,,) given by
(13.59) in the discrete case of the hidden Markov model, and so the recursion equa-
tion now takes the form

Cna(zn) _p(xnlzn)/a(zn—l)p(znZnl)dznvl- (1385)

Substituting for the conditionals p(z,,|z,,—1 ) and p(x,, |2, ), using (13.75) and (13.76),
respectively, and making use of (13.84), we see that (13.85) becomes

cﬂN(Z'rcIJufna Vn) == N(xn’czn: Z)
/ N(Z-;;,|AZ-”,_'| s P)N(Zn— 1 |M-“_-1 A VA ) dz,, ;. (13.86)

Here we are supposing that g, _, and V,,_; are known, and by evaluating the inte-
gral in (13.86), we wish to determine values for g, and V,,. The integral is easily
evaluated by making use of the result (2.115), from which it follows that

/N(Z”|Azﬂ“1‘- F)N(ZTI--I |Ju'ﬂ,—'] ; Vnﬁl) dz,,
= N(zn|Ap,_1,P,_q) (13.87)
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where we have defined y
P A=AV, AT 4T (13.88)

We can now combine this result with the first factor on the right-hand side of (13.86)
by making use of (2.115) and (2.116) to give

B = Ap,_ +K,(x, - CAp, ) (13.89)
Vn. = (I - KH.C)P-”,— 1 (1 390)
cn = N(x,|/CAp,_,,CP,_,C"+3). (13.91)

Here we have made use of the matrix inverse identities (C.5) and (C.7) and also
defined the Kalman gain matrix

K, =P, ,C"(CP, ,C"+%) . (13.92)

Thus, given the values of g, and V,,_. together with the new observation x,,
we can evaluate the Gaussian marginal for z,, having mean g, and covariance V.
as well as the normalization coefficient ¢,,.

The initial conditions for these recursion equations are obtained from

cra(zy) = pl(z1)p(x;|2z1). (13.93)

Because p(z) is given by (13.77), and p(x,|z,) is given by (13.76), we can again
make use of (2.115) to calculate ¢; and (2.116) to calculate g4, and V, giving

e = o+ Ki(xy — Cpy) (13.94)
VvV, = I-K;C)Vy (13.95)
¢ = N(x1|Cpy, CV,CT +X) (13.96)
where ' .
K, =V,CT (CV,C"+ %) . (13.97)

Similarly, the likelihood function for the linear dynamical system is given by (13.63)
in which the factors ¢,, are found using the Kalman filtering equations.

We can interpret the steps involved in going from the posterior marginal over
Z,_1 to the posterior marginal over z,, as follows. In (13.89), we can view the
quantity Age,, , as the prediction of the mean over z,, obtained by simply taking the
mean over z,_, and projecting it forward one step using the transition probability
matrix A. This predicted mean would give a predicted observation for x,, given by
CAz,_, obtained by applying the emission probability matrix C to the predicted
hidden state mean. We can view the update equation (13.89) for the mean of the
hidden variable distribution as taking the predicted mean A, _, and then adding
a correction that is proportional to the error x,, — CAz,_, between the predicted
observation and the actual observation. The coefficient of this correction is given by
the Kalman gain matrix. Thus we can view the Kalman filter as a process of making
successive predictions and then correcting these predictions in the light of the new
observations. This is illustrated graphically in Figure 13.21.
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Zn—1 Zn

Figure 13.21 The linear dynamical system can be viewed as a sequence of steps in which increasing un-
certainty in the state variable due to diffusion is compensated by the arrival of new data. In the left-hand plot,
the blue curve shows the distribution p(z,,_1|x1,...,x, 1), which incorporates all the data up to step n — 1.
The diffusion arising from the nonzero variance of the transition probability p(z,|z,_1) gives the distribution
p(zn[x1,...,xn-1), shown in red in the centre plot. Note that this is broader and shifted relative to the blue curve
(which is shown dashed in the centre plot for comparison). The next data observation x,, contributes through the
emission density p(x |z ), which is shown as a function of z,, in green on the right-hand plot. Note that this is not
a density with respect to z,, and so is not normalized to one. Inclusion of this new data point leads to a revised

distribution p(z.[x1, ..., x,) for the state density shown in blue. We see that observation of the data has shifted
and narrowed the distribution compared to p(z.|x1,...,x,_1) (which is shown in dashed in the right-hand plot
for comparison).

If we consider a situation in which the measurement noise is small compared
to the rate at which the latent variable is evolving, then we find that the posterior
distribution for z,, depends only on the current measurement x,,, in accordance with
the intuition from our simple example at the start of the section. Similarly, if the
latent variable is evolving slowly relative to the observation noise level, we find that
the posterior mean for z,, is obtained by averaging all of the measurements obtained
up to that time.

One of the most important applications of the Kalman filter is to tracking, and
this is illustrated using a simple example of an object moving in two dimensions in
Figure 13.22.

So far, we have solved the inference problem of finding the posterior marginal
for a node z,, given observations from x; up to x,,. Next we turn to the problem of
finding the marginal for a node z,, given all observations x, to x». For temporal
data, this corresponds to the inclusion of future as well as past observations. Al-
though this cannot be used for real-time prediction, it plays a key role in learning the
parameters of the model. By analogy with the hidden Markov model, this problem
can be solved by propagating messages from node x, back to node x; and com-
bining this information with that obtained during the forward message passing stage
used to compute the &(z,, ).

In the LDS literature, it is usual to formulate this backward recursion in terms
of ¥(z,) = &(2,)3(2,) rather than in terms of 3(z,,). Because v(z,,) must also be
Gaussian, we write it in the form

Exercise 13.27

Exercise 13.28

V(2n) = 6(20)5(20) = N (20|, V). (13.98)

To derive the required recursion, we start from the backward recursion (13.62) for

Figure 13.22 An llustration of a linear dy-
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namical system being used to
track a moving object. The blue
points indicate the true positions
of the object in a two-dimensional
space at successive time steps,
the green points denote noisy
measurements of the positions,
and the red crosses indicate the
means of the inferred posterior
distributions of the positions ob-
tained by running the Kalman fil-
tering equations. The covari-
ances of the inferred positions |
are indicated by the red ellipses,
which correspond to contours . . " : .
having one standard deviation.

g(zﬁ ), which, for continuous latent variables, can be written in the form

~
I

Cn+1 E(Zu) == /,d(sz»l )P(Xu.--| I‘Zn-{- 1)P(Zn--|-1 |Z'H.) dz:rL+1 . (]399)

We now multiply both sides of (13.99) by a(z,) and substitute for p(X,1|%n1)
and p(zy,1|zy,) using (13.75) and (13.76). Then we make use of (13.89), (13.90)
and (13.91), together with (13.98), and after some manipulation we obtain

fp = oy +Tn (B — Apy) (13.100)
Vﬂ - V'ﬂ. + Jn ({fn.+1 - Pn) Jé (]3'0[)

where we have defined
J, =V, AT (P, (13.102)
and we have made use of AV,, = P, JT. Note that these recursions require that the
forward pass be completed first so that the quantities g1, and V,, will be available
for the backward pass.
For the EM algorithm, we also require the pairwise posterior marginals, which
can be obtained from (13.65) in the form

1~ a

f(Zn—l-. Z“) = (Cn)i o (Z'H-— 1 )p(xn.‘Zn)p(zn‘zfl)ﬁ(zn)
N(Zn-1thy— 1, Vi 1)N (20| Az 1, T)N (x| C2in, E)N(anmVn)‘
Cn0i(Zy,)

(13.103)

Substituting for &(z,,) using (13.84) and rearranging, we see that é(z.,,,_.,z”) is a
Gaussian with mean given with components +(z,,_;) and ¥(z,,), and a covariance
between z,, and z,,_ given by

COV[Zn. Zn—1] = Jue1 V. (13.104)



642 13. SEQUENTIAL DATA

Exercise 13.32

13.3.2 Learningin LDS

So far, we have considered the inference problem for linear dynamical systems,
assuming that the model parameters @ = {A, T, C, X, p,,. V } are known. Next, we
consider the determination of these parameters using maximum likelihood (Ghahra-
mani and Hinton, 1996b). Because the model has latent variables, this can be ad-
dressed using the EM algorithm, which was discussed in general terms in Chapter 9.

We can derive the EM algorithm for the linear dynamical system as follows. Let
us denote the estimated parameter values at some particular cycle of the algorithm
by 8. For these parameter values, we can run the inference algorithm to determine
the posterior distribution of the latent variables p(Z| X, 8°'), or more precisely those
local posterior marginals that are required in the M step. In particular, we shall
require the following expectations

Elz,] = fi, (13.105)
E([zuzp ] = Jo Vo + fyfir (13.106)
E[znzt] = Vi +fifis (13.107)

where we have used (13.104).
Now we consider the complete-data log likelihood function, which is obtained
by taking the logarithm of (13.6) and is therefore given by

!\.'
Inp(X,Z10) = Inplz|p,, Vo) + Zln p(Zn|2,—1, A, T)
=2
i\‘r

+Zlnp(xnlzn, C. 3

n=1

(13.108)

in which we have made the dependence on the parameters explicit. We now take the
expectation of the complete-data log likelihood with respect to the posterior distri-
bution p(Z|X, 8'") which defines the function
Q(6,6°) = Eggou [Inp(X, Z|6)] . (13.109)
In the M step, this function is maximized with respect to the components of 8.
Consider first the parameters o, and V. If we substitute for p(z; 1o, Vi) in
(13.108) using (13.77), and then take the expectation with respect to Zi, we obtain

olc 1 1 Txr—
(2(0. 6 11) — —§ hl ‘V(]J — ]EZ|()""' {2(Z| —_ M[)) IV[) I(ZJ = M“)J + const

where all terms not dependent on g4, or V|, have been absorbed into the additive
constant. Maximization with respect to g, and V is easily performed by making
use of the maximum likelihood solution for a Gaussian distribution discussed in
Section 2.3.4, giving

S
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pieY = Efz] (13.110)
Vie¥  —  [E[z;z7] — E[z]E[z]]. (13.111)

Similarly, to optimize A and I, we substitute for p(z, |z, 1, A, T') in (13.108)
using (13.75) giving

N-1

Q(0,0°") = — In|T|

1 N
—Eo g | = w— Az, )T Yz, — Azp_ 1) | +const  (13.112)
Ezo [2 ;(Z 1) ( 1)

in which the constant comprises terms that are independent of A and I'. Maximizing
with respect to these parameters then gives

—1
N N
Anew (ZE [ZTLZ'E—I}) (ZE [anzg—l]) (13.113)
n=2

n=2
N
l T new T
Iwmew - _N_:_l Z {E [Z,',,Z,JJ —_ A_ E [Z”_IZJJ

n=2

-E [Z"’-z;]i‘—l} APEY L ATEWR [Zw.flz;l,,‘_d (Asz)'l‘} . (13.114)

Note that A™" must be evaluated first, and the result can then be used to determine

I\ll(i\\"
Finally, in order to determine the new values of C and X, we substitute for

p(%5, |25, C, X) in (13.108) using (13.76) giving

-

Q6.0 = -Z [z
1 &
—[Eg|gota 3 Z:l(xn - Czn)TE“l(xn — Cz,) | + const.
Maximizing with respect to C and X then gives
N N =4
cnew (Z x,E [zf},j) (ZE [z.”zﬂ) (13.115)
n=1 n=1
1 N
2 = ﬁ Z {X,,,XTIL - C™"E [Z'n] X;f,
n=1
—x,E [z} ] C" + C™VE [2,2z,] C™V}.  (13.116)
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We have approached parameter learning in the linear dynamical system using
maximum likelihood. Inclusion of priors to give a MAP estimate is straightforward,
and a fully Bayesian treatment can be found by applying the analytical approxima-
tion techniques discussed in Chapter 10, though a detailed treatment is precluded
here due to lack of space.

13.3.3 Extensions of LDS

As with the hidden Markov model, there is considerable interest in extending
the basic linear dynamical system in order to increase its capabilities. Although the
assumption of a linear-Gaussian model leads to efficient algorithms for inference
and learning, it also implies that the marginal distribution of the observed variables
is simply a Gaussian, which represents a significant limitation. One simple extension
of the linear dynamical system is to use a Gaussian mixture as the initial distribution
for z;. If this mixture has K components, then the forward recursion equations
(13.85) will lead to a mixture of K" Gaussians over each hidden variable z,,, and so
the model is again tractable.

For many applications, the Gaussian emission density is a poor approximation.
If instead we try to use a mixture of A Gaussians as the emission density, then the
posterior &(z;) will also be a mixture of K Gaussians. However, from (13.85) the
posterior &(zy) will comprise a mixture of K2 Gaussians, and so on, with &(z,,)
being given by a mixture of K" Gaussians. Thus the number of components grows
exponentially with the length of the chain, and so this model is impractical.

More generally, introducing transition or emission models that depart from the
linear-Gaussian (or other exponential family) model leads to an intractable infer-
ence problem. We can make deterministic approximations such as assumed den-
sity filtering or expectation propagation, or we can make use of sampling methods,
as discussed in Section 13.3.4. One widely used approach is to make a Gaussian
approximation by linearizing around the mean of the predicted distribution, which
gives rise to the extended Kalman filter (Zarchan and Musoff, 2005).

As with hidden Markov models, we can develop interesting extensions of the ba-
sic linear dynamical system by expanding its graphical representation. For example,
the switching state space model (Ghahramani and Hinton, 1998) can be viewed as
a combination of the hidden Markov model with a set of linear dynamical systems.
The model has multiple Markov chains of continuous linear-Gaussian latent vari-
ables, each of which is analogous to the latent chain of the linear dynamical system
discussed earlier, together with a Markov chain of discrete variables of the form used
in a hidden Markov model. The output at each time step is determined by stochas-
tically choosing one of the continuous latent chains, using the state of the discrete
latent variable as a switch, and then emitting an observation from the corresponding
conditional output distribution. Exact inference in this model is intractable, but vari-
ational methods lead to an efficient inference scheme involving forward-backward
recursions along each of the continuous and discrete Markov chains independently.
Note that, if we consider multiple chains of discrete latent variables, and use one as
the switch to select from the remainder, we obtain an analogous model having only
discrete latent variables known as the switching hidden Markov model.
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13.3.4 Particle filters

For dynamical systems which do not have a linear-Gaussian, for example, if
they use a non-Gaussian emission density, we can turn to sampling methods in order
to find a tractable inference algorithm. In particular, we can apply the sampling-
importance-resampling formalism of Section 11.1.5 to obtain a sequential Monte
Carlo algorithm known as the particle filter.

Consider the class of distributions represented by the graphical model in Fig-
ure 13.5, and suppose we are given the observed values X,, = (x;....,x,) and
we wish to draw L samples from the posterior distribution p(z,,|X,,). Using Bayes’
theorem, we have

E[f(zﬂ)] = ff(zn)p(zn|xvz) dzn
&= / f(zn)p(znrxna Xﬂ—l) dz,,

/.f(z'n )p(xn‘z'ﬂz)p(zn ‘Xn—l) dz’n,

/ '[)(X‘,,_‘Z,l )P(Z-n |X'n.— 1 ) dzn

L

~ > wl f(z) (13.117)

1=1

where {z.ff)} is a set of samples drawn from p(z,|X,, ) and we have made use of
the conditional independence property p(x,,|z,,. X,,_1) = p(x,|2, ), which follows

from the graph in Figure 13.5. The sampling weights {w,({!)} are defined by

0
Wl — __ PEnzn) (13.118)

ok p(xalz™)

where the same samples are used in the numerator as in the denominator. Thus the
posterior distribution p(z, |x,,) is represented by the set of samples {z?(qI )} together
with the corresponding weights {w,(f )}. Note that these weights satisfy 0 < 1;,4,?)1
and ), wi) =

Because we wish to find a sequential sampling scheme, we shall suppose that
a set of samples and weights have been obtained at time step 7, and that we have
subsequently observed the value of x,, 1, and we wish to find the weights and sam-
ples at time step n + 1. We first sample from the distribution p(z,,41|X,,). This is
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straightforward since, again using Bayes’ theorem
P2 1| X)) = / (21|20, X ) (20| X ) dzy,
= / B 1 |20)p(2,] X)) dzy,
= / P(Zg |2 (2 |00, X 1) Az,
[ Pz i, X 1) da

/p(xnzn)p(znxn—l) dz,

= Y wPp(zas2)) (13.119)
!
where we have made use of the conditional independence properties
P(Zni1l20, Xn) = plZpii]za) (13.120)
] (X'nlzu.-xw.fl) - P(lezn) (17’12])

which follow from the application of the d-separation criterion to the graph in Fig-
ure 13.5. The distribution given by (13.119) is a mixture distribution, and samples
can be drawn by choosing a component [ with probability given by the mixing coef-
ficients w") and then drawing a sample from the corresponding component.

In summary, we can view each step of the particle filter algorithm as comprising
two stages. At time step n, we have a sample representation of the posterior dis-
tribution p(z, |X,,) expressed as samples {z?({')} with corresponding weights {wg)}.
This can be viewed as a mixture representation of the form (13.119). To obtain the
corresponding representation for the next time step, we first draw L samples from
the mixture distribution (13.119), and then for each sample we use Lhe new obser-

vation x,1 to evaluate the corresponding weights wgl] X p(Xpt12,, +1) This is
illustrated, for the case of a single variable z, in Figure 13.23.

The particle filtering, or sequential Monte Carlo, approach has appeared in the
literature under various names including the bootstrap filter (Gordon et al., 1993),
survival of the fittest (Kanazawa et al., 1995), and the condensation algorithm (Isard
and Blake, 1998).

Exercises
13.1

(*) m Use the technique of d-separation, discussed in Section 8.2, to verify
that the Markov model shown in Figure 13.3 having N nodes in total satisfies the
conditional independence properties (13.3) for n = 2, ..., N. Similarly, show that
a model described by the graph in Figure 13.4 in which there are N nodes in total

Figure 13.23

13.2

13.3

13.4
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P(Zn Xn )

]J(Z” b ||Xu.) —

D(Kppp 1| Zns1)

p(szrl ‘Xﬂ+ 1 ) —2

Schematic illustration of the operation of the particle filter for a one-dimensional latent
space. At time step n, the posterior p(z,|x,) is represented as a mixture distribution,

shown schematically as circles whose sizes are proportional to the welghts w. A set of

L samples is then drawn from this distribution and the new weights w,,+1 evaluated using

(f) ).

P(xn 1 ‘ZH+J

satisfies the conditional independence properties

p(xn‘xlw-'-xn—l _p(xulxn 1 X - 2) (13122)

forn=3,....N.

(x*) Consider the joint probability distribution (13.2) corresponding to the directed
graph of Figure 13.3. Using the sum and product rules of probability, verify that
this joint distribution satisfies the conditional independence property (13.3) for n =
2,...,1 V. Similarly, show that the second-order Markov model described by the
joint dlS[l‘lbllUOIl (13.4) satisfies the conditional independence property

(13.123)

p(xn|xls O sxn—l) - p(Xn|Xn~1,Xn72)

forn=23,...,N.

(*) By using d-separation, show that the distribution p(x;,...,xy) of the observed
data for the state space model represented by the directed graph in Figure 13.5 does
not satisfy any conditional independence properties and hence does not exhibit the
Markov property at any finite order.

(% *) m Consider a hidden Markov model in which the emission densities are
represented by a parametric model p(x|z, w), such as a linear regression model or
a neural network, in which w is a vector of adaptive parameters. Describe how the
parameters w can be learned from data using maximum likelihood.
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13.5 (%) Verify the M-step equations (13.18) and (13.19) for the initial state probabili-
ties and transition probability parameters of the hidden Markov model by maximiza-
tion of the expected complete-data log likelihood function (13.17), using appropriate
Lagrange multipliers to enforce the summation constraints on the components of
and A.

13.6 (x) Show that if any elements of the parameters 7 or A for a hidden Markov
model are initially set to zero, then those elements will remain zero in all subsequent
updates of the EM algorithm.

13.7 (%) Consider a hidden Markov model with Gaussian emission densities. Show that
maximization of the function (@, 8°'") with respect to the mean and covariance
parameters of the Gaussians gives rise to the M-step equations (13.20) and (13.21).

13.8 (x») [l For a hidden Markov model having discrete observations governed by
a multinomial distribution, show that the conditional distribution of the observations
given the hidden variables is given by (13.22) and the corresponding M step equa-
tions are given by (13.23). Write down the analogous equations for the conditional
distribution and the M step equations for the case of a hidden Markov with multiple
binary output variables each of which is governed by a Bernoulli conditional dis-
tribution. Hint: refer to Sections 2.1 and 2.2 for a discussion of the corresponding
maximum likelihood solutions for i.i.d. data if required.

13.9 () I Use the d-separation criterion to verify that the conditional indepen-
dence properties (13.24)—(13.31) are satisfied by the joint distribution for the hidden
Markov model defined by (13.6).

13.10 (x++) By applying the sum and product rules of probability, verify that the condi-
tional independence properties (13.24)—(13.31) are satisfied by the joint distribution
for the hidden Markov model defined by (13.6).

13.11 (%) Starting from the expression (8.72) for the marginal distribution over the vari-
ables of a factor in a factor graph, together with the results for the messages in the
sum-product algorithm obtained in Section 13.2.3, derive the result (13.43) for the
joint posterior distribution over two successive latent variables in a hidden Markov
model.

13.12 (*%) Suppose we wish to train a hidden Markov model by maximum likelihood
using data that comprises 2 independent sequences of observations, which we de-
note by X" where » = 1,..., R. Show that in the E step of the EM algorithm,
we simply evaluate posterior probabilities for the latent variables by running the o
and [ recursions independently for each of the sequences. Also show that in the
M step, the initial probability and transition probability parameters are re-estimated
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using modified forms of (13.18 ) and (13.19) given by

T = —w’*' (13.124)

R N
ZZ&'( r: 1,4 nk)

Ay = —=in=2 (13.125)

R
Z£(4n 1,5: ﬂl

1 n=2

i
||M,\

where, for notational convenience, we have assumed that the sequences are of the
same length (the generalization to sequences of different lengths is straightforward).
Similarly, show that the M-step equation for re-estimation of the means of Gaussian
emission models is given by

" N
D3 HaShx

py, = ==t . (13.126)

IPIREN

r=1 n=1

Note that the M-step equations for other emission model parameters and distributions
take an analogous form.

13.13 () I Use the definition (8.64) of the messages passed from a factor node
to a variable node in a factor graph, together with the expression (13.6) for the joint
distribution in a hidden Markov model, to show that the definition (13.30) of the
alpha message is the same as the definition (13.34),

13.14 (x«) Use the definition (8.67) of the messages passed from a factor node to a
variable node in a factor graph, together with the expression (13.6) for the joint
distribution in a hidden Markov model, to show that the definition (13.52) of the
beta message is the same as the definition (13.35).

13.15 (%) Use the expressions (13.33) and (13.43) for the marginals in a hidden Markov
model to derive the corresponding results (13.64) and (13.65) expressed in terms of
re-scaled variables.

13.16 (>%%) In this exercise, we derive the forward message passing equation for the
Viterbi algorithm directly from the expression (13.6) for the joint distribution. This
involves maximizing over all of the hidden variables z1, ..., zy. By taking the log-
arithm and then exchanging maximizations and summations, derive the recursion
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13.17

13.18

13.19

13.20
13.21

13.22

13.23

13.24

13.25

(13.68) where the quantities w(z,,) are defined by (13.70). Show that the initial
condition for this recursion is given by (13.69).

(*) m Show that the directed graph for the input-output hidden Markov model,
given in Figure 13.18, can be expressed as a tree-structured factor graph of the form
shown in Figure 13.15 and write down expressions for the initial factor h(z,) and
for the general factor f,,(z, 1,2, ) where 2 < n < N.

(xx) Using the result of Exercise 13.17, derive the recursion equations, includ-
ing the initial conditions, for the forward-backward algorithm for the input-output
hidden Markov model shown in Figure 13.18.

KR The Kalman filter and smoother equations allow the posterior distribu-
tions over individual latent variables, conditioned on all of the observed variables,
to be found efficiently for linear dynamical systems. Show that the sequence of
latent variable values obtained by maximizing each of these posterior distributions
individually is the same as the most probable sequence of latent values. To do this,
simply note that the joint distribution of all latent and observed variables in a linear
dynamical system is Gaussian, and hence all conditionals and marginals will also be
Gaussian, and then make use of the result (2.98).

(=) KT Use the result (2.115) to prove (13.87).

(x%) Use the results (2.115) and (2.116), together with the matrix identities (C.5)
and (C.7), to derive the results (13.89), (13.90), and (13.91), where the Kalman gain
matrix K, is defined by (13.92).

Gex) KR Using (13.93), together with the definitions (13.76) and (13.77) and
the result (2.115), derive (13.96).

(x*) Using (13.93), together with the definitions (13.76) and (13.77) and the result
(2.116), derive (13.94), (13.95) and (13.97).

(« ) KM Consider a generalization of (13.75) and (13.76) in which we include
constant terms a and ¢ in the Gaussian means, so that

p(Zn|anl) b N(ZnIAZ'H.—l + a, F)

p(xnlzn) = N(XnJCZn +c, E)

(13.127)
(13.128)

Show that this extension can be re-case in the framework discussed in this chapter by
defining a state vector z with an additional component fixed at unity, and then aug-
menting the matrices A and C using extra columns corresponding to the parameters
a and c.

(k%) In this exercise, we show that when the Kalman filter equations are applied
to independent observations, they reduce to the results given in Section 2.3 for the
maximum likelihood solution for a single Gaussian distribution. Consider the prob-
lem of finding the mean . of a single Gaussian random variable z, in which we are
given a set of independent observations {x1,...,zx}. To model this we can use

13.26

13.27

13.28

13.29

13.30

13.31

13.32

13.33
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a linear dynamical system governed by (13.75) and (13.76), with latent variables
{z1,..., zn} in which C becomes the identity matrix and where the transition prob-
ability A = 0 because the observations are independent. Let the parameters my
and V of the initial state be denoted by o and oZ, respectively, and suppose that
3 becomes o*. Write down the corresponding Kalman filter equations starting from
the general results (13.89) and (13.90), together with (13.94) and (13.95). Show that
these are equivalent to the results (2.141) and (2.142) obtained directly by consider-
ing independent data.

(* %) Consider a special case of the linear dynamical system of Section 13.3 that is
equivalent to probabilistic PCA, so that the transition matrix A = 0, the covariance
I' = I, and the noise covariance 3 = ¢°I. By making use of the matrix inversion
identity (C.7) show that, if the emission density matrix C is denoted W, then the
posterior distribution over the hidden states defined by (13.89) and (13.90) reduces
to the result (12.42) for probabilistic PCA.

() B Consider a linear dynamical system of the form discussed in Sec-
tion 13.3 in which the amplitude of the observation noise goes to zero, so that £ = (.
Show that the posterior distribution for z, has mean x,, and zero variance. This
accords with our intuition that if there is no noise, we should just use the current
observation x,, to estimate the state variable z,, and ignore all previous observations.

(x %) Consider a special case of the linear dynamical system of Section 13.3 in
which the state variable z,, is constrained to be equal to the previous state variable,
which corresponds to A = I and I' = 0. For simplicity, assume also that V; — oc
so that the initial conditions for z are unimportant, and the predictions are determined
purely by the data. Use proof by induction to show that the posterior mean for state
Z, is determined by the average of xy,...,x,. This corresponds to the intuitive
result that if the state variable is constant, our best estimate is obtained by averaging
the observations.

(»*«) Starting from the backwards recursion equation (13.99), derive the RTS
smoothing equations (13.100) and (13.101) for the Gaussian linear dynamical sys-
tem.

() Starting from the result (13.65) for the pairwise posterior marginal in a state
space model, derive the specific form (13.103) for the case of the Gaussian linear
dynamical system.

(% %) Starting from the result (13.103) and by substituting for c(z,, ) using (13.84),
verify the result (13.104) for the covariance between z,, and z,, .

(++) KM Verify the results (13.110) and (13.111) for the M-step equations for
oy and Vy in the linear dynamical system.

(x%) Verify the results (13.113) and (13.114) for the M-step equations for A and I"
in the linear dynamical system.,



