
1Trans-dimensional Markov 
hain Monte CarloPeter J. GreenUniversity of Bristol, UK1 Introdu
tionReaders of this book will need no further 
onvin
ing of the importan
e of Markov
hain Monte Carlo (MCMC) in numeri
al 
al
ulations for highly stru
turedsto
hasti
 systems, and in parti
ular for posterior inferen
e in Bayesian sta-tisti
al models. Another 
hapter (Roberts, this volume) is devoted to dis
ussionof some of the 
urrently important resear
h dire
tions in MCMC generally. This
hapter is more narrowly fo
ussed on MCMC methods for what 
an be 
alled`trans-dimensional' problems, to borrow a ni
ely apt phrase from Roeder andWasserman (1997): those where the dynami
 variable of the simulation, the`unknowns' in the Bayesian set-up, does not have �xed dimension.Statisti
al problems where `the number of things you don't know is one ofthe things you don't know' are ubiquitous in statisti
al modelling, both in tradi-tional modelling situations su
h as variable sele
tion in regression, and in morenovel methodologies su
h as obje
t re
ognition, signal pro
essing, and Bayesiannonparametri
s. All su
h problems 
an be formulated generi
ally as a matterof joint inferen
e about a model indi
ator k and a parameter ve
tor �k, wherethe model indi
ator determines the dimension nk of the parameter, but this di-mension varies from model to model. Almost invariably in a frequentist setting,inferen
e about these two kinds of unknown is based on di�erent logi
al prin-
iples, but, at least formally, the Bayes paradigm o�ers the opportunity of asingle logi
al framework | it is the joint posterior p(k; �kjY ) of model indi
atorand parameter given data Y that is the basis for inferen
e. How 
an this be
omputed?We set the joint inferen
e problem naturally in the form of a simple Bayesianhierar
hi
al model. We suppose given a prior p(k) over models k in a 
ountableset K, and for ea
h k, a prior distribution p(�kjk) and a likelihood p(Y jk; �k)for the data Y . For de�niteness and simpli
ity of exposition, we suppose thatp(�kjk) is a density with respe
t to nk-dimensional Lebesgue measure, and thatthere are no other parameters, so that where there are parameters 
ommon toall models these are subsumed into ea
h �k 2 Rnk . Additional parameters,perhaps in additional layers of a hierar
hy, are easily dealt with. Note that inthis 
hapter, all probability distributions are proper.



2 Trans-dimensional Markov 
hain Monte CarloThe joint posteriorp(k; �kjY ) = p(k)p(�kjk)p(Y jk; �k)Pk02K R p(k0)p(�0k0 jk0)p(Y jk0; �0k0 )d�0k0
an always be fa
torised asp(k; �kjY ) = p(kjY )p(�kjk; Y );that is as the produ
t of posterior model probabilities and model-spe
i�
 param-eter posteriors. This identity is very often the basis for reporting the inferen
e,and in some of the methods mentioned below is also the basis for 
omputation.It is important to appre
iate the generality of this basi
 formulation. Inparti
ular, note that it embra
es not only genuine model-
hoi
e situations, wherethe variable k indexes the 
olle
tion of dis
rete models under 
onsideration,but also settings where there is really a single model, but one with a variabledimension parameter, for example a fun
tional representation su
h as a serieswhose number of terms is not �xed. In the latter 
ase, arising sometimes inBayesian nonparametri
s, for example, k is unlikely to be of dire
t inferentialinterest.It 
an be argued that responsible adoption of a Bayesian hierar
hi
al modelof the kind introdu
ed above presupposes that, for example, parameter priorsp(�kjk) should be 
ompatible in the sense that inferen
e about fun
tions of pa-rameters that are meaningful in several models should be approximately invari-ant to k. Su
h 
ompatibility 
ould in prin
iple be exploited in the 
onstru
tionof MCMC methods, although I am not aware of general methods for doing so.However, it is philosophi
ally tenable that no su
h 
ompatibility is present, andwe shall not assume it.Trans-dimensional MCMC has many appli
ations other than to Bayesianstatisti
s. Mu
h of what follows will apply equally to them all; however, forsimpli
ity, I shall use the Bayesian motivation and terminology throughout.In Se
tion 2, reversible jump MCMC is dis
ussed, and this is related to othermodel-jumping approa
hes in Se
tion 3. The following se
tion treats alternativesto model-jumping, and Se
tion 5 dis
usses and analyses some of the issues in-volved in 
hoosing between the within- and a
ross-model approa
hes. In Se
tion6, a simple fully-automated reversible jump sampler is introdu
ed, and �nallySe
tion 7 notes some re
ent methodologi
al extensions.2 Reversible jump MCMCIn the dire
t approa
h to 
omputation of the joint posterior p(k; �kjY ) viaMCMC we 
onstru
t a single Markov 
hain simulation, with states of the form(k; �k); we might 
all this an a
ross-model simulation. We address other ap-proa
hes in later se
tions.The state spa
e for su
h an a
ross-model simulation is Sk2K(fkg � Rnk );mathemati
ally, this is not a parti
ularly awkward obje
t, and our 
onstru
tion



Trans-dimensional Markov 
hain Monte Carlo 3involves no espe
ially 
hallenging novelties. However, su
h a state spa
e is atleast a little non-standard! Formally, our task is to 
onstru
t a Markov 
hainon a general state spa
e with a spe
i�ed limiting distribution, and as usual inBayesian MCMC for 
omplex models, we use the Metropolis{Hastings paradigmto build a suitable reversible 
hain. As we see in the next subse
tion, on the fa
eof it, this requires measure-theoreti
 notation, whi
h may be unwel
ome to somereaders. The point of the `reversible jump' framework is to render the measuretheory invisible, by means of a 
onstru
tion using only ordinary densities. Infa
t, in the formulation given below, di�erent and I hope improved from that ofGreen (1995), even the fa
t that we are jumping dimensions be
omes essentiallyinvisible!2.1 Metropolis{Hastings on a general state spa
eWe wish to 
onstru
t a Markov 
hain on a state spa
e X with invariant distri-bution �. As usual in MCMC we will 
onsider only reversible 
hains, so thetransition kernel P satis�es the detailed balan
e 
onditionZ(x;x0)2A�B �(dx)P (x; dx0) = Z(x;x0)2A�B �(dx0)P (x0; dx) (2.1)for all Borel sets A;B � X . In Metropolis{Hastings, we make a transition by�rst drawing a 
andidate new state x0 from the proposal measure q(x; dx0) andthen a

epting it with probability �(x; x0), to be derived below. If we reje
t, westay in the 
urrent state, so that P (x; dx0) has an atom at x. This 
ontributesthe same quantity RA\B P (x; fxg)�(dx) to ea
h side of (2.1); subtra
ting thisleavesZ(x;x0)2A�B �(dx)q(x; dx0)�(x; x0) = Z(x;x0)2A�B �(dx0)q(x0; dx)�(x0; x): (2.2)It 
an be shown (Green 1995; Tierney 1998) that �(dx)q(x; dx0) is dominated bya symmetri
 measure � on X � X ; let its density (Radon{Nikodym derivative)with respe
t to this � be f . Then (2.2) be
omesZ(x;x0)2A�B �(x; x0)f(x; x0)�(dx; dx0) = Z(x;x0)2A�B �(x0; x)f(x0; x)�(dx0; dx)and, using the symmetry of �, this is 
learly satis�ed for all Borel A;B if�(x; x0) = min�1; f(x0; x)f(x; x0)� :This might be written more informally in the apparently familiar form�(x; x0) = min�1; �(dx0)q(x0; dx)�(dx)q(x; dx0) � : (2.3)



4 Trans-dimensional Markov 
hain Monte Carlo2.2 A 
onstru
tive representation in terms of random numbersFortunately, the apparent abstra
tion in this pres
ription 
an be 
ir
umventedin most 
ases. By 
onsidering how the transition will be implemented in a
omputer program, the dominating measure and Radon{Nikodym derivatives
an be generated impli
itly. Take the 
ase where X � Rd, and suppose � hasa density (also denoted �) with respe
t to d-dimensional Lebesgue measure. Atthe 
urrent state x, we generate, say, r random numbers u from a known jointdensity g, and then form the proposed new state as some suitable deterministi
fun
tion of the 
urrent state and the random numbers: x0 = h(x; u), say. Theleft-hand side of (2.2) 
an then be written as an integral with respe
t to (x; u):Z(x;x0)2A�B �(x)g(u)�(x; x0) dx du:The reverse transition from x0 to x would be made with the aid of randomnumbers u0 � g0 giving x = h0(x0; u0). If the transformation from (x; u) to (x0; u0)is a di�eomorphism (the transformation and its inverse are di�erentiable), thenwe 
an �rst write the right-hand side of (2.2) as an integral with respe
t to(x0; u0), and then apply the standard 
hange-of-variable formula. We then seethat the (d+ r)-dimensional integral equality (2.2) holds if�(x)g(u)�(x; x0) = �(x0)g0(u0)�(x0; x) �����(x0; u0)�(x; u) ���� ;where the last fa
tor is the Ja
obian of the di�eomorphism from (x; u) to (x0; u0).Thus, a valid 
hoi
e for � is�(x; x0) = min�1; �(x0)g0(u0)�(x)g(u) �����(x0; u0)�(x; u) ����� ; (2.4)involving only ordinary joint densities.While this reversible jump formalism perhaps is a little indire
t, it proves a
exible framework for 
onstru
ting quite 
omplex moves using only elementary
al
ulus. In parti
ular, the possibility that r < d 
overs the 
ase, typi
al inpra
ti
e, that given x 2 X , only a lower-dimensional subset of X is rea
hablein one step. (The Gibbs sampler is the best-known example of this, sin
e inthat 
ase only some of the 
omponents of the state ve
tor are 
hanged at atime, although the formulation here is more general as it allows the subset notto be parallel to the 
oordinate axes.) Separating the generation of the randominnovation u and the 
al
ulation of the proposal value through the deterministi
fun
tion x0 = h(x; u) is deliberate; it allows the proposal distribution q(x;B) =Rx02B h(x; u)g(u)du to be expressed in many di�erent ways, for the 
onvenien
eof the user.2.3 The trans-dimensional 
aseHowever, the main bene�t of this formalism is that expression (2.4) applies,without 
hange, in a variable dimension 
ontext, if we use the same symbol �(x)



Trans-dimensional Markov 
hain Monte Carlo 5for the target density whatever the dimension of x in di�erent parts of X . Pro-vided that the transformation from (x; u) to (x0; u0) remains a di�eomorphism,the individual dimensions of x and x0 
an be di�erent. The dimension-jumpingis indeed `invisible'.In this setting, suppose the dimensions of x; x0; u and u0 are d; d0; r and r0respe
tively, then we have fun
tions h : Rd�Rr ! Rd0 and h0 : Rd0�Rr0 ! Rd,used respe
tively in x0 = h(x; u) and x = h0(x0; u0). For the transformation from(x; u) to (x0; u0) to be a di�eomorphism requires that d + r = d0 + r0, so-
alled`dimension-mat
hing'; if this equality failed, the mapping and its inverse 
ouldnot both be di�erentiable.2.4 Details of appli
ation to the model-
hoi
e problemReturning to our generi
 model-
hoi
e problem, we wish to use these reversiblejump moves to sample the spa
e X = Sk2K(fkg�Rnk ) with invariant distribu-tion �, whi
h here is p(k; �kjY ).Just as in ordinary MCMC, we typi
ally need multiple types of moves totraverse the whole spa
e X . Ea
h move is a transition kernel reversible withrespe
t to �, but only in 
ombination do we obtain an ergodi
 
hain. The moveswill be indexed by m in a 
ountable set M, and a parti
ular move m proposesto take x = (k; �k) to x0 = (k0; �0k0) or vi
e versa for a spe
i�
 pair (k; k0); wedenote fk; k0g by Km. The detailed balan
e equation (2.2) is repla
ed byZ(x;x0)2A�B �(dx)qm(x; dx0)�m(x; x0) = Z(x;x0)2A�B �(dx0)qm(x0; dx)�m(x0; x)for ea
h m, where now qm(x; dx0) is the joint distribution of move type m anddestination x0. The 
omplete transition kernel is obtained by summing over m,so that for x 62 B, P (x;B) = PM RB qm(x; dx0)�m(x; x0), and it is easy to seethat (2.1) is then satis�ed.The analysis leading to (2.3) and (2.4) is modi�ed 
orrespondingly, and yields�m(x; x0) = min�1; �(x0)�(x) jm(x0)jm(x) g0m(u0)gm(u) �����(x0; u0)�(x; u) ����� :Here jm(x) is the probability of 
hoosing move type m when at x, the variablesx; x0; u; u0 are of dimensions dm; d0m; rm; r0m respe
tively, with dm + rm = d0m +r0m, we have x0 = hm(x; u) and x = h0m(x0; u0), and the Ja
obian has a form
orrespondingly depending on m.Of 
ourse, when at x = (k; �k), only a limited number of moves m will typi-
ally be available, namely those for whi
h k 2 Km. With probability1�Pm:k2Km jm(x) no move is attempted.2.5 Some remarks and rami�
ationsIn understanding the reversible jump framework, it may be helpful to stress thekey role played by the joint state-proposal equilibrium distributions. The fa
tthat the degrees of freedom in these joint distributions are un
hanged when x and



6 Trans-dimensional Markov 
hain Monte Carlox0 are inter
hanged allows the possibility of reversible jumps a
ross dimensions,and these distributions dire
tly determine the move a

eptan
e probabilities.Note that the framework gives insights into Metropolis{Hastings that applyquite generally. State-dependent mixing over a family of transition kernels ingeneral infringes detailed balan
e, but is permissible if, as here, the move prob-abilities jm(x) enter properly into the a

eptan
e probability 
al
ulation. Notealso the 
ontrast between this randomised proposal me
hanism, and the relatedidea of mixture proposals, where the a

eptan
e probability does not dependon the move a
tually 
hosen; see the dis
ussion in Besag et al. (1995, appendix1). Contrary to some a

ounts that 
onne
t it with the jump in dimension, theJa
obian 
omes into the a

eptan
e probability simply through the fa
t that theproposal destination x0 = h(x; u) is spe
i�ed indire
tly.Finally, note that in a large 
lass of problems involving nested models, theonly dimension 
hange ne
essary is the addition or deletion of a 
omponentof the parameter ve
tor (think of polynomial regression, or autoregression ofvariable order). In su
h 
ases, omission of a 
omponent is often equivalent tosetting a parameter to zero. These problems 
an be handled in a seemingly moreelementary way, through allowing proposal distributions with an atom at zero:the usual Metropolis{Hastings formula for the a

eptan
e probability holds fordensities with respe
t to arbitrary dominating measures, so the reversible jumpformalism is not expli
itly needed. Nevertheless, it leads to exa
tly the samealgorithm.Other authors have provided di�erent pedagogi
al des
riptions of reversiblejump. Waagepetersen and Sorensen (2001) provide a tutorial following the linesof Green (1995) but in mu
h more detail, and Besag (1997, 2000) gives a novelformulation in whi
h variable dimension notation is 
ir
umvented by embeddingall �k within one 
ompound ve
tor; this has something in 
ommon with theprodu
t-spa
e formulations in the next subse
tion.3 Relations to other a
ross-model approa
hesSeveral alternative formalisms for a
ross-model simulation are more or less 
loselyrelated to reversible jump.Jump di�usion. In addressing 
hallenging 
omputer vision appli
ations, Gre-nander and Miller (1994) proposed a sampling strategy they termed jump di�u-sion. This 
omprised two kinds of move | between-model jumps, and within-model di�usion a

ording to a Langevin sto
hasti
 di�erential equation. Sin
ein pra
ti
e, 
ontinuous-time di�usion has to be approximated by a dis
rete-timesimulation, they were in fa
t using a trans-dimensional Markov 
hain. Had they
orre
ted for the time dis
retisation by a Metropolis{Hastings a

ept/reje
t de-
ision (giving a so-
alled Metropolis-adjusted Langevin algorithm or MALA)(Besag 1994), this would have been an example of reversible jump.Phillips and Smith (1996) applied jump-di�usion 
reatively to a variety ofBayesian statisti
al tasks, in
luding mixture analysis, obje
t re
ognition and



Trans-dimensional Markov 
hain Monte Carlo 7variable sele
tion.Point pro
esses, with and without marks. Point pro
esses form a naturalexample of a distribution with variable-dimension support, sin
e the number ofpoints in view is random; in the basi
 
ase, a point has only a lo
ation, but moregenerally may be a

ompanied by a mark, a random variable in a general spa
e.A 
ontinuous time Markov 
hain approa
h to simulating 
ertain spatial pointpro
esses, by regarding them as the invariant distributions of spatial birth-and-death pro
esses, was suggested and investigated by Preston (1977) and Rip-ley (1977). More re
ently, Geyer and M�ller (1994) proposed a Metropolis{Hastings sampler, as an alternative to using birth-and-death pro
esses; their
onstru
tion is a spe
ial 
ase of reversible jump.Stephens (2000) notes that various trans-dimensional statisti
al problems
an be viewed as abstra
t marked point pro
esses: in these models, the items ofwhi
h there are a variable number are regarded as marked points. For examplein a normal mixture model the points represent the mean{varian
e pairs of the
omponents, marked with the 
omponent weights. Stephens borrows the birth-and-death simulation idea to develop a methodology for �nite mixture analysis,and also suggests that the approa
h appears to have mu
h wider appli
ation,
iting 
hange point analysis and regression variable sele
tion as partially workedexamples. The key feature of these three settings that allows the approa
h towork is the pra
ti
ability of integrating out latent variables so that the likelihoodis fully available. See also Hurn et al. (2001) for appli
ation to mixtures ofregressions. Capp�e et al. (2001) have re
ently given a rather 
omplete analysisof the relationship between reversible jump and 
ontinuous time birth-and-deathsamplers.Produ
t-spa
e formulations. Several relatives of reversible jump work in aprodu
t spa
e framework, that is, one in whi
h the simulation keeps tra
k ofall �k, not only the `
urrent' one. The state spa
e is therefore K � 
k2KRnkinstead of Sk2K(fkg�Rnk). This has the advantage of 
ir
umventing the trans-dimensional 
hara
ter of the problem, at the pri
e of requiring that the targetdistribution be augmented to model all �k simultaneously. For some variantsof this approa
h, this is just a formal devi
e, for others it leads to signi�
antlyextra work.Let ��k denote the 
omposite ve
tor 
onsisting of all �l; l 6= k 
atenatedtogether. Then the joint distribution of (k; (�l : l 2 K); Y ) 
an be expressed asp(k)p(�kjk)p(��kjk; �k)p(Y jk; �k); (3.1)sin
e we make the natural assumption that p(Y jk; (�l : l 2 K)) = p(Y jk; �k).It is easily seen that the third fa
tor p(��kjk; �k) has no e�e
t on the jointposterior p(k; �kjY ); the 
hoi
e of these 
onditional distributions, whi
h Carlinand Chib (1995) 
all `pseudo-priors', is entirely a matter of 
onvenien
e, but mayin
uen
e the eÆ
ien
y of the resulting sampler.



8 Trans-dimensional Markov 
hain Monte CarloCarlin and Chib (1995) adopted pseudo-priors that were 
onditionally inde-pendent: p(��kjk; �k) = Ql6=k p(�ljk), and assumed p(�ljk) does not depend onk for k 6= l. They used a Gibbs sampler, updating k and all �l in turn. Thisevidently involves sampling from the pseudo-priors, and they therefore proposeto design these pseudo-priors to ensure reasonable eÆ
ien
y, whi
h requires theirapproximate mat
hing to the posteriors: p(�ljk) � p(�ljl; Y ).Green and O'Hagan (1998) pointed out both that Metropolis{Hastings moves
ould be made in this setting, and that in any 
ase there was no need to updatef�l; l 6= kg to obtain an irredu
ible sampler. In this form the pseudo-priors areonly used in 
omputing the update of k. Dellaportas et al. (2002) proposed andinvestigated a `Metropolised Carlin and Chib' approa
h, in whi
h joint modelindi
ator/parameter updates were made, and in whi
h it is only ne
essary toresample the parameter ve
tors for the 
urrent and proposed models.Godsill (2001) introdu
es a general `
omposite model spa
e' framework thatembra
es all of these methods, in
luding reversible jump, fa
ilitating 
omparisonsbetween them. He devised the formulation (3.1), or rather, a more general versionin whi
h the parameter ve
tors �k are allowed to overlap arbitrarily, ea
h �kbeing identi�ed with a parti
ular sub-ve
tor of one 
ompound parameter. Thisframework helps to reveal that a produ
t-spa
e sampler may or may not entailpossibly 
umbersome additional simulation, updating parameters that are notpart of the `
urrent' model. It also gives useful insight into some of the importantfa
tors governing the performan
e of reversible jump, and Godsill o�ers somesuggestions on proposal design.Godsill's formulation deserves further attention, as it provides a useful lan-guage for 
omparing approa
hes, and in parti
ular examining one of the 
en-tral unanswered questions in trans-dimensional MCMC. Suppose the simulationleaves model k and later returns to it. With reversible jump, the values of �kare lost as soon as we leave k, while with some versions of the produ
t-spa
eapproa
h, the values are retained until k is next visited. Intuitively either strat-egy has advantages and disadvantages for sampler performan
e, so whi
h is tobe preferred?4 Alternatives to joint model-parameter samplingThe dire
t approa
h of a single a
ross-model simulation is in many ways themost appealing, but alternative indire
t methods that treat the unknowns k and�k di�erently should not be negle
ted.Integrating out the parameters. If in ea
h model k, the prior is 
onjugatefor the likelihood, then p(�kjk; Y ) may be expli
itly available, and then
e 
an be
al
ulated the marginal likelihoodsp(Y jk) = p(�kjk)p(Y jk; �k)p(�kjk; Y )



Trans-dimensional Markov 
hain Monte Carlo 9and �nally the posterior probabilities p(kjY ) / p(k)p(Y jk). In the very limited
ases where this is possible, Bayesian inferen
e about k, and about �k given k,
an be 
ondu
ted separately, and trans-dimensional simulations are not needed.The approa
h has been taken a little further by Godsill (2001), who 
onsiders
ases of `partial analyti
 stru
ture', where some of the parameters in �k may beintegrated out, and the others left un
hanged in the move that updates themodel, to give an a
ross-model sampler with probable superior performan
e.Within-model simulation. If samplers for the within-model posteriors p(�kjY; k) are available for ea
h k, then joint posterior inferen
e for (k; �k) 
an be
onstru
ted by 
ombining separate simulations 
ondu
ted within ea
h model.See Carlin and Louis (1996, x6.3.1) for more detailed dis
ussion.The posterior p(�kjY; k) for the parameters �k is in any 
ase a within-modelnotion, and is the target for an ordinary Bayesian MCMC 
al
ulation for modelk. Sin
e p(k1jY )p(k0jY ) = p(k1)p(k0) p(Y jk1)p(Y jk0)(the se
ond fa
tor being the Bayes fa
tor for model k1 vs. k0), to �nd the poste-rior model probabilities p(kjY ) for all k it is suÆ
ient to estimate the marginallikelihoods p(Y jk) = Z p(�k; Y jk) d�kseparately for ea
h k, using individual MCMC runs. Several di�erent methodshave been devised for this task.Noting that p(Y jk) 
an be expressed as fR [p(�kjk; Y )=p(Y jk; �k)℄ d�kg�1 ormore dire
tly as R p(Y jk; �k)p(�kjk) d�k, leads respe
tively to the estimatesbp1(Y jk) = N, NXt=1 np(Y jk; �(t)k )o�1 and bp2(Y jk) = N�1 NXt=1 p(Y jk; �(t)k );based on MCMC samples �(1)k ; �(2)k ; : : : from the posterior p(�kjY; k) and theprior p(�kjk), respe
tively. Both of these are simulation-
onsistent, but havehigh varian
e, with possibly few terms 
ontributing substantially to the sumsin ea
h 
ase. Composite estimates, based like bp1 and bp2 on the importan
esampling identity Ep(f) = Eq(fp=q), perform better, in
luding those of Newtonand Raftery (1994) and Gelfand and Dey (1994). For example, Newton andRaftery propose to simulate from a mixture ep(�k;Y; k) of the prior and posterior,and use bp3(Y jk) = PNt=1 p(Y jk; �(t)k )w(�(t)k )PNt=1 w(�(t)k ) ;where w(�k) = p(�kjk)=ep(�k;Y; k).Chib (1995) has introdu
ed new, indire
t, estimates of the marginal likeli-hood based on the identity p(Y jk) = p(Y jk; �?k)p(�?k jk)=p(�?kjk; Y ) for any �xed
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hain Monte Carloparameter point �?k. The fa
tors in the numerator are available, and in 
ontextswhere the parameter 
an be de
omposed into blo
ks with expli
it full 
ondition-als, the denominator 
an be estimated using simulation 
al
ulations that usethe same Gibbs sampling steps as the posterior simulation. Note, however, thatNeal (1999) has demonstrated that Chib's appli
ation of this idea to mixturemodels is in
orre
t. Chib and Jeliazkov (2001) extend the idea to 
ases whereMetropolis{Hastings is needed.5 Some issues in 
hoosing a sampling strategySeveral studies have addressed the strengths and weaknesses of reversible jumpMCMC and the other trans-dimensional setups above 
ompared to within-modelsimulations that 
ompute marginal likelihoods and then
e Bayes fa
tors. Par-ti
ularly noteworthy are Dellaportas et al. (2002), Godsill (2001) and Han andCarlin (2001). Ea
h of these dis
usses some of the issues involved and provides
omparisons of implementations and performan
e on test problems, although,understandably in the present state of our knowledge with these methods, it ishard to see any of these as entirely de�nitive.One of the key matters in
uen
ing the 
hoi
e here is the number of modelsto be entertained, taking a

ount of the degree of homogeneity between them.The ideal situation for the `within-model' strategy would be a 
ase where themodels are all of a di�erent 
hara
ter, and fully-tested samplers with a

eptableperforman
e are already available for ea
h. In su
h a 
ase, building an a
ross-model sampler 
ould be very laborious 
ompared to adding marginal likelihood
al
ulations to ea
h model separately.Some authors have re
orded poor performan
e with reversible jump methods.Sin
e reversible jump algorithms embra
e all Metropolis{Hastings methods forthe a
ross-model state spa
e, it is hard to believe that there are no methods inthis huge 
lass that would give a

eptable performan
e. It would be fairer tosay that existing examples of reversible jump implementations may be poor tem-plates for 
onstru
ting samplers in some new situations. A diÆ
ulty is that thea
ross-model state spa
e may be hard to visualise so that some of the intuitionthat guides 
onstru
tion of samplers in simpler spa
es is not available.Others have deemed reversible jump methods 
umbersome to 
onstru
t anddiÆ
ult to tune. There seems to be a need for further methodologi
al work, de-veloping broader 
lasses of a
ross-model samplers, with asso
iated visualisationte
hniques, to assist in 
onstru
tion and tuning. Very re
ent work by Brooks etal. (2000) may be a good step in this dire
tion; see Se
tion 7.2. Of 
ourse, asin other domains for MCMC, fully-automated sampler 
onstru
tion would be atremendous advantage: a very limited step towards this is introdu
ed in Se
tion6 below.Finally, the a
ross-model approa
h does have another potential bene�t |the possibility that jumping models 
an improve mixing. This is dis
ussed next.
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laims in the literature to the ef-fe
t that jumping between parameter subspa
es is either inherently damaging toMCMC performan
e and should therefore be avoided where possible, or alterna-tively that it is helpful for performan
e, and might even be attempted when itis not stri
tly ne
essary.For example, Ri
hardson and Green (1997) des
ribe a simple experiment,illustrated in their Fig. 9, demonstrating that in a parti
ular example of a mixtureproblem with a strongly multimodal posterior, mixing is 
learly improved byusing a trans-dimensional sampler, while Han and Carlin (2001) 
laim to have`intuition that some gain in pre
ision should a

rue to MCMC methods thatavoid a model spa
e sear
h'.In truth, the proper answer is `it depends', but some simple analysis doesreveal some of the issues. There are three main situations that might be 
on-sidered: in the �rst, we require full posterior inferen
e about (k; �k). A se
ondpossibility is that we wish to make within-model inferen
e about �k separately,for ea
h of a (perhaps small) set of values of k. The third 
ase is where k is really�xed, and the other models are ruled out a priori. This third option is 
learly theleast favourable for trans-dimensional samplers: visits of the (k; �k) 
hain to the`wrong' models are wasted from the point of view of extra
ting useful posteriorinformation; let us try to analyse whether superior mixing in these other models
an nevertheless make it worthwhile to use a trans-dimensional sampler.5.2 The two-model 
aseFor simpli
ity, we suppose there are just two models, k = 1 and 2, and let �kdenote the distribution of �k given k: only �1 is of interest. We have transitionkernels Q11, Q22, with �kQkk = �k for ea
h k; (we use a notation apparentlyaimed at the �nite state spa
e 
ase, but it is quite general: for example, �Qmeans the probability measure (�Q)(B) = R �(dx)Q(x;B)). We now 
onsiderthe option of also allowing between-model transitions, with the aid of kernels Q12and Q21; for realism, these are improper distributions, integrating to less than1, re
e
ting the fa
t that in pra
ti
e a
ross-model Metropolis{Hastings movesare frequently reje
ted. When a move is reje
ted, the 
hain does not move,
ontributing a term to the `diagonal' of the transition kernel; thus we supposethere exist diagonal kernelsD1 andD2, and we have the global balan
e 
onditionsfor the a
ross-model moves: �1D1 + �2Q21 = �1 and �2D2 + �1Q12 = �2.Assuming that we make a random 
hoi
e between the two moves availablefrom ea
h state, � and � being the probabilities of 
hoosing to attempt thebetween-model move in models 1, 2 respe
tively, the overall transition kernel forthe a
ross-model sampler isP = � (1� �)Q11 + �D1 �Q12�Q21 (1� �)Q22 + �D2 �using an obvious matrix notation. The invariant distribution is easily seen to be
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�1; (1� 
)�2), where 
 = �=(�+ �).Now suppose we run the Markov 
hain given by P , but look at the stateonly when in model 1. By standard Markov 
hain theory, the resulting 
hainhas kernel eQ11 = (1��)Q11+�D1+�Q12fI � (1��)Q22��D2g�1�Q21. The
omparison we seek is that between using Q11 or the more 
ompli
ated strategythat amounts to using eQ11, but we must take into a

ount di�eren
es in 
ostsof 
omputing. Suppose that exe
uting Q11 or Q22 has unit 
ost per transition,while attempting and exe
uting the a
ross-model moves has 
ost 
 times greater.Then, per transition, the equilibrium 
ost of using P is 
(1 � �) + 
�
 + (1 �
)�
+(1� 
)(1��), and this gives on average 
 visits to model 1. The relative
ost in 
omputing resour
es of using eQ11 instead of Q11 therefore simpli�es to(1� �) + 2�
+ �(1� �)=� (using the relationship 
� = (1� 
)�).If we 
hoose to measure performan
e by asymptoti
 varian
e of a spe
i�
ergodi
 average, then we have integrated auto
orrelation times � and e� for Q11and eQ11 respe
tively, and jumping models is a good idea if� < e�f(1� �) + 2�
+ �(1� �)=�g:Of 
ourse, e� depends on � and �.5.3 Finite state spa
e exampleIt is interesting to 
ompute these terms for toy �nite-state-spa
e examples wherethe eigenvalue 
al
ulations 
an be made expli
itly. For example, taking D1 =D2 = 0:8I , 
orresponding to an 80% reje
tion rate for between-model moves, andall the Q matri
es to be symmetri
 re
e
ting random walks on m = 10 states,with di�ering probabilities of moving, to model di�erently `sti
ky' samplers,spe
i�
ally (Q11)i;i�1 = 0:03, (Q12)i;i�1 = 0:2� 0:1, (Q21)i;i�1 = 0:2� 0:1, and(Q22)i;i�1 = 0:3, we �nd that model jumping is worthwhile for all 
 up to about15, with optimal � � 1 and � � 0:1. This is a situation where the rapid mixingin model 2 
ompared to that in model 1 justi�es the expense of jumping from 1to 2 and ba
k again.5.4 Tempering-by-embeddingSu
h 
onsiderations raise the possibility of arti�
ially embedding a given statis-ti
al model into a family indexed by k, and 
ondu
ting an a
ross-model simula-tion simply to improve performan
e | that is, as a kind of simulated tempering(Marinari and Parisi 1992). A parti
ular example of the bene�t of doing so wasgiven by Hodgson (1999) in 
onstru
ting a sampler for restoration of ion 
hannelsignals. A straightforward approa
h to this task gave poor mixing, essentiallybe
ause of high posterior 
orrelation between the model hyperparameters andthe hidden binary signal. This 
orrelation is higher when the data sequen
e islonger, so a tempering-by-embedding solution was to break the data into blo
ks,with the model hyperparameters allowed to 
hange between adja
ent blo
ks. Thepart of the prior 
ontrolling this arti�
ial model elaboration was adjusted em-piri
ally to give moderately high rates of visiting the real model, while spending
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ient time in the arti�
ial heterogeneous models for the harmful 
orrelationto be substantially diluted.Further eviden
e that model-jumping 
an provide e�e
tive tempering, ad-mittedly in a somewhat 
ontrived setting, was provided by Ri
hardson andGreen (1997). They 
ompared �xed-k and variable-k samplers for a normal mix-ture problem with k 
omponents, applied to a symmetrised bimodal data set. Inthis 
ase, there was substantial posterior support for k = 2 and 4; MCMC-basedinferen
e about parameters 
onditional on k = 3 was greatly superior using thevariable-k sampler.6 An automati
 generi
 trans-dimensional samplerThe possibility of automating the 
onstru
tion of a MCMC sampler for any giventarget distribution is attra
tive but elusive. It would be a tremendous pra
ti
aladvantage if the user 
ould just spe
ify the target in algebrai
 form, perhapstogether with a few numeri
al 
onstants su
h as starting values, and leave the
omputer both to 
onstru
t an algorithm and then run it to 
reate a reliablesample.The nearest we 
an 
ome to this ideal at present, for sampling from a�xed-dimensional density, is the random-walk Metropolis (RWM) sampler (seeRoberts, this volume), in the most simple form where all variables are simul-taneously updated. Other possibilities, requiring a little more user input, areLangevin methods, or the hybrid samplers of Duane et al. (1987). RWM is nota pana
ea. From a theoreti
al perspe
tive, it is imperfe
t sin
e even geometri
ergodi
ity is not guaranteed, as it requires 
onditions on the relative size of thetails of the target and proposal densities. In fa
t, no kind of ergodi
ity is 
ertain,sin
e there may be holes in the support of the target and/or the proposal densitywhi
h 
ould prevent irredu
ibility, but su
h pathologies are easily avoided. Thereis also the important pra
ti
al 
onsideration that updating all variables at on
eprevents the exploitation of fa
torisations of the target that make the a

eptan
eprobabilities for lower-dimensional updates parti
ularly 
heap to 
ompute.In spite of these drawba
ks, the RWM methods are useful and it would bevaluable to have an analogous 
lass of methods for trans-dimensional problems,parti
ularly for exploratory use. In this se
tion, we propose a rather naive ap-proa
h to this quest, but as experiments show, the results are quite promising.Suppose that for ea
h model k, we are given a �xed nk-ve
tor �k and a�xed nk �nk-matrix Bk. Consider the situation where we are 
urrently in state(k; �k) and have proposed a move to model k0, drawn from some transition matrix(rk;k0 ). The form of the proposed new parameter ve
tor depends on whether nk0is less than, equal to, or more than nk. We set:�0k0 =8>><>>: �k0 +Bk0 [RB�1k (�k � �k)℄nk01 if nk0 < nk�k0 +Bk0RB�1k (�k � �k) if nk0 = nk�k0 +Bk0R� B�1k (�k � �k)u � if nk0 > nk :
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omponents of a ve
tor, R is a �xed orthogonalmatrix of order maxfnk; nk0g, and u is a (nk0 � nk)-ve
tor of random numberswith density g(u).Note that if nk0 � nk, the proposal is deterministi
 (apart from the 
hoi
e ofk0). Sin
e everything is linear, the Ja
obian is trivially 
al
ulated: if nk0 > nk,we have ���� �(�k0)�(�k; u) ���� = jBk0 jjBk j :Thus the a

eptan
e probability is minf1; Ag, whereA = p(k0; �0k0 jy)p(k; �jy) rk0 ;krk;k0 jBk0 jjBkj �8<: g(u) if nk0 < nk1 if nk0 = nkg(u)�1 if nk0 > nk :Sin
e it is orthogonal, the matrix R plays no role in this 
al
ulation.If the model-spe
i�
 targets p(�kjk; y) were normal distributions, with means�k and varian
es BkBTk , if the innovation variables u were standard normal,and if we 
ould 
hoose rk;k0=rk0;k = p(k0jY )=p(kjY ), these proposals would al-ready be in detailed balan
e, with no need to 
ompute the Metropolis{Hastingsa

ept/reje
t de
ision. This is the motivation for the idea.This suggests that, providing the p(�kjk; y) are reasonably unimodal, withmean and varian
e approximately equal to �k and BkBTk , this simple samplermay be e�e
tive. A simple modi�
ation, likely to give performan
e more robustto heavy tails in the targets, would be to use t-distributions in pla
e of thenormals for u. Another modi�
ation, plausibly likely on general grounds toimprove mixing, is to randomise over the orthogonal matrix R, or, more simply,take R to be a random permutation matrix. By the usual argument aboutrandomised proposals (Besag et al. 1995, Appendix 1), this randomisation 
anbe ignored when 
al
ulating the a

eptan
e probability.In appli
ations, we are only likely to have approximations to the mean andvarian
es of p(�kjk; y) when we 
an 
ondu
t pilot runs within ea
h model sepa-rately | thus limiting the idea to 
ases where the set of models K is �nite andsmall. In our implementation, we loop over these models and perform a shortrun of RWM on ea
h to estimate the means �k and varian
es BkBTk . We then�nd the lower triangular square root of the varian
e Bk (and its determinant)by Cholesky de
omposition; the advantage of using a lower triangular Bk is thatwe 
an use forward substitution to multiply B�1k into a ve
tor.Finally, the idea might have broader appli
ability if the pilot runs were usedalso to dete
t and 
orre
t gross departures from normality | perhaps a trans-formation to redu
e skewness 
ould be estimated, for example. We have notexplored su
h modi�
ations.6.1 ExamplesThis method has been implemented as a stand-alone Fortran program, availablefrom the author by email (P.J.Green�bris.a
.uk), whi
h 
alls a fun
tion writ-
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ompute log p(k; �k; y). The only other information requiredabout the problem, also provided by this fun
tion, are the number of models,their dimensions, and rough settings for the 
entre and spread of ea
h variable,used for initial values and spread parameters for the RWM moves. The 
odeis set up to alternate between model-jumping moves as des
ribed above, andwithin-model moves by RWM.We have tried the approa
h on two non-trivial examples; the 
odes for thesetwo were identi
al apart from the information just des
ribed.(a) Variable sele
tion in a small logisti
 regression problem. Dellapor-tas et al. (2002) illustrate their 
omparisons between model-jumping algorithmson a small data set. This is a 2 � 2 fa
torial experiment with a binomiallydistributed response variable. All 5 interpretable models are entertained, withnumbers of parameters (nk) equal to 1, 2, 2, 3 and 4 respe
tively. We followDellaportas et al. exa
tly in terms of prior settings, et
. One million sweepsof the automati
 sampler, many more than is needed for reliable results, takesabout 18 se
onds on a 800MHz PC. The a

eptan
e rate for the model-jumpingmoves was 29.4%, and the integrated auto
orrelation time for estimating E(kjy)was estimated by Sokal's method (Green and Han 1992) to be 2.90. The poste-rior model probabilities were 
omputed to be (0.005, 0.493, 0.011, 0.439, 0.052),
onsistent with the results of Dellaportas et al.(b) Change point analysis for a point pro
ess. We revisit the 
hangepoint analysis of the 
oal mine disaster data used in Green (1995). In thisillustration, we 
ondition on the number of 
hange points k lying in the setf1; 2; 3; 4; 5; 6g (whi
h 
overs most of the posterior probability). All the priorsettings, et
., are as in Green (1995). There are 2k + 1 parameters in modelk. For this problem, 1 million sweeps takes about 28 se
onds on a 800MHzPC. The posterior for the number of 
hange points was estimated to be (0.058,0.251, 0.294, 0.236, 0.117, 0.044) for the values k = 1 to 6. Note that thisdi�ers somewhat from the results reported in Green (1995); in fa
t if the samplerderived there is run for 200 000 sweeps instead of 40 000, the results be
omevery similar. On this problem, the automati
 sampler mixes mu
h less well: thea

eptan
e rate for model-jumping is 5.9%, while the integrated auto
orrelationtime estimate rises to 118. This de
line in performan
e is presumably due to theextreme multi-modal 
hara
ter of many of the parameter posteriors.For 
omparison, the sampler des
ribed in Green (1995) takes 14 se
ondsfor 1 000 000 sweeps on this 
omputer, with an a

eptan
e rate of 21% andestimated auto
orrelation time of 67.8. On this basis, the relative eÆ
ien
y ofthe automati
 sampler is only (14� 67:8)=(28� 118) � 29%, but of 
ourse theimplementation time was far less.6.2 Limitations of this approa
hI have stressed that this automati
 sampler 
annot be expe
ted to have verybroad appli
ability. However, its su

essful use on the se
ond example above
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an be surprisingly tolerant to multimodality in the model-spe
i�
targets. (As seen in Figs. 3 and 4 of Green (1995), multimodality is evident evenfor k = 2, and it rapidly be
omes very severe for larger k.) In su
h 
ases, it isne
essary for the proposal spread fa
tors provided to be suÆ
iently large thatthere is adequate jumping between modes, in the pilot runs within ea
h model.This approa
h is unlikely to be useful for more than a small set of models,so that, for example, variable sele
tion between many variables is probably outof rea
h. It may, however, be worth exploring whether quite 
rude approxima-tions to the means and varian
es of ea
h target give adequate performan
e, andwhether su
h approximations 
an be generated for variable sele
tion problemswithout 
ondu
ting pilot runs on all models.7 Methodologi
al extensions7.1 Delayed reje
tionAn interesting modi�
ation to Metropolis{Hastings is the splitting reje
tion ideaof Tierney and Mira (1999), whi
h has re
ently been extended to the reversiblejump setting by Green and Mira (2001), who 
all it delayed reje
tion.The idea is simple: if a proposal is reje
ted, instead of `giving up', stayingin the 
urrent state, and advan
ing time to the next transition, we 
an insteadattempt a se
ond proposal, usually from a di�erent distribution, and possiblydependent on the value of the reje
ted proposal. It is possible to set the a
-
eptan
e probability for this se
ond-stage proposal so that detailed balan
e isobtained, individually within ea
h stage. The idea 
an be extended to furtherstages.By the results of Peskun (1973), generalised in Tierney (1998), su
h a strategyis always advantageous in terms of redu
ing asymptoti
 varian
es of ergodi
averages, on a sweep-by-sweep basis, sin
e the probability of moving in
reases bystage. Whether it is a
tually worth doing will depend on whether the redu
tionin Monte Carlo varian
e 
ompensates for the additional 
omputing time for theextra stages; the experiments reported in Green and Mira (2001) suggest thatthis 
an be the 
ase.The se
ond-stage a

eptan
e probability is 
al
ulated by an argument alongthe same lines as that in Se
tion 2 above. We use two ve
tors of random numbersu1 and u2, drawn from densities g1 and g2 respe
tively, and two deterministi
fun
tions mapping these and the 
urrent state into the proposed new states,y = h1(x; u1) and z = h2(x; u1; u2), respe
tively. Both u1 and u2 appear inthe expression for z to allow this se
ond-stage proposal to be dependent on thereje
ted �rst-stage 
andidate y; for example, z may be a move in a di�erent`dire
tion' in some sense.The �rst-stage proposal is a

epted with probability �1(x; y) 
al
ulated asusual: �1(x; y) = min�1; �(y)g01(u01)�(x)g1(u1) �����(y; u01)�(x; u1) ����� ;
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h that x = h01(y; u01).Consider the 
ase where the move to y is reje
ted. We need to �nd an a

ep-tan
e probability �2(x; z) giving detailed balan
e for the se
ond-stage proposalz. As in the single-stage 
ase, we set up a di�eomorphism between (x; u1; u2)and (z;fu1;fu2), wherefu1 andfu2) would be the random numbers used in the �rst-and se
ond-stage attempts from z. Then x = h02(z;fu1;fu2) and the �rst-stagemove, if a

epted, would have taken us to y? = h01(z;fu1).Completing the argument as in Se
tion 2.2, equating integrands after makingthe 
hange of variable, we �nd that a valid 
hoi
e for the required a

eptan
eprobability is�2(x; z) = min�1; �(z)�(x) eg1(fu1) eg2(fu2)g1(u1)g2(u2) [1� �1(z; y?)℄[1� �1(x; y)℄ �����(z;fu1;fu2)�(x; u1; u2) ����� : (7.1)In a model-jumping problem, we would 
ommonly take y and z to lie in thesame model, and y? to be in the same model as x, although as dis
ussed by Greenand Mira, other 
hoi
es are possible. For example, where models are ordered by
omplexity, z might lie between x and y, so that the se
ond-stage proposal isless `bold'.7.2 EÆ
ient proposal 
hoi
e for reversible jump MCMCThe most substantial re
ent methodologi
al 
ontribution to reversible jumpMCMC generally is work by Brooks et al. (2000) on the eÆ
ient 
onstru
tion ofproposal distributions.This is fo
ussed mainly on the quantitative question of sele
ting the proposaldensity (g(u) in Se
tion 2.2) well, having already �xed the transformation (x0 =h(x; u)) into the new spa
e. The qualitative 
hoi
e of su
h a transformation h isperhaps more elusive and 
hallenging.Brooks, Giudi
i and Roberts propose several new methods, falling into twomain 
lasses. The �rst is 
on
erned with analysis of the a

eptan
e rate (2.3)as a fun
tion of u for small u (on an appropriate s
ale of measurement). These
ond 
lass of methods work in a produ
t-spa
e formulation somewhat like thatin Se
tion 3, in
luding some novel formulations with autoregressively 
onstru
tedauxiliary variables.Their methods are implemented and 
ompared on examples in
luding 
hoi
eof autoregressive models, graphi
al gaussian models, and mixture models.7.3 Diagnosti
s for reversible jump MCMCMonitoring of MCMC 
onvergen
e on the basis of empiri
al statisti
s of thesample path is important, while not of 
ourse a substitute for a good theoreti
alunderstanding of the 
hain. There has been some 
on
ern that a
ross-model
hains are intrinsi
ally more diÆ
ult to monitor, perhaps implying their useshould be avoided.In truth, the degree of 
on�den
e that 
onvergen
e has been a
hieved pro-vided by `passing' a diagnosti
 
onvergen
e test de
lines very rapidly as the
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e in
reases. In more than, say, a dozen dimensions,it is diÆ
ult to believe that a few, even well-
hosen, s
alar statisti
s give an ad-equate pi
ture of 
onvergen
e of the multivariate distribution. It is high, ratherthan variable, dimensions that are the problem.In most trans-dimensional problems in Bayesian MCMC it is easy to �nds
alar statisti
s that retain their de�nition and interpretation a
ross models,typi
ally those based on �tted and predi
ted values of observations, and these arenatural 
andidates for diagnosti
s, requiring no spe
ial attention to the variabledimension.However, re
ognising that there is often empiri
al eviden
e that a trans-dimensional simulation stabilises more qui
kly within models than it does a
rossmodels, there has been re
ent work on diagnosti
 methods that address the trans-dimensional problem more spe
i�
ally. A promising approa
h by Brooks andGiudi
i (2000) is based on analysis of sums of squared variation in sample pathsfrom multiple runs of a sampler. This is de
omposed into terms attributable tobetween- and within-run, and between- and within-model variation.A
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Proposal densities, and produ
t spa
e methodsSimon J. GodsillUniversity of Cambridge, UK1 Introdu
tionIn this arti
le, Peter Green has provided the most informative and 
ompletesurvey 
urrently available of the issues surrounding Bayesian model un
ertaintyusing MCMC methods. Naturally he has fo
ussed on the reversible jump meth-ods whi
h have dominated the �eld over re
ent years, although he has pointedout the 
lose relationships with the produ
t spa
e formulations of Besag (1997),Carlin and Chib (1995), Godsill (2001) and Dellaportas et al. (2002).Pra
titioners have readily adopted reversible jump methods for use in 
om-plex Bayesian problems, and yet even after several years in the literature themethods have a reputation for being somehow `diÆ
ult' to understand and stillmore diÆ
ult to implement su

essfully. Green's arti
le helps further to demys-tify the reversible jump methodology by providing some useful new dis
ussionmaterial and a very transparent derivation of the basi
 results. The arti
le alsodis
usses re
ent developments in proposal design and introdu
es a novel proposalme
hanism for general models.So, is there any methodologi
al work still to be done in the �eld? Green'sarti
le is very 
lear on this issue: the basi
 frameworks, whether pure reversiblejump or 
ombined with produ
t spa
e ideas, are well established; however, thespe
i�
s of a generi
 implementation are not, and it is 
lear that it is theseareas that 
an most bene�t from renewed resear
h e�ort. In fa
t, given thegeneral interest from a wide variety of dis
iplines in this topi
, there have beensurprisingly few methodologi
al developments in the area up to now. In thefollowing se
tions, I will fo
us on just two developing topi
s: automati
 proposalgeneration and produ
t spa
e methods.2 Constru
tion of proposal densitiesKey to the e�e
tive operation of reversible jump methods is the 
hoi
e of pro-posal distributions. Most appli
ations to date have 
onstru
ted proposals on anad ho
 basis, attempting to pla
e proposed parameters in regions of high proba-bility mass in the new model's parameter spa
e. This 
an be su

essful in some
ases, but it is tempting to seek an automati
 pro
edure that does not requirethe tuning and pilot runs often required in these ad ho
 settings. There havebeen some re
ent advan
es in this dire
tion, as dis
ussed in Green's arti
le. Iwill attempt to interpret Green's new proposal me
hanism in the light of morestandard Gaussian approximation methods for reversible jump.
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t spa
e methodsIn Godsill (2001) it was suggested that an optimal 
hoi
e of proposal wouldbe the full 
onditional posterior probability for the parameters in the new model,i.e. set q(�k0 ) = p(�k0 jk0; y), in whi
h 
ase the a

eptan
e ratio simpli�es top(k0jy)q(kjk0)p(kjy)q(k0jk)where q(k0jk) is the probability that model k0 is proposed from model k. Wenote that this highly idealised setting leads to an a

eptan
e probability whi
his 
onstant for all values of �k0 . This is in agreement with the obje
tives of the`higher order methods' proposed in Brooks et al. (2000), in whi
h proposals arespe
i�
ally designed so that one or more derivatives of the a

eptan
e ratio areset to zero lo
ally at a 
hosen representative `
entering' point. Brooks et al.(2000) lend some theoreti
al weight to the suggestion that p(�k0 jk0; y) is a goodproposal density by proving that the 
apa
itan
e of the Markov 
hain is optimisedby this 
hoi
e of proposal in a simple two-model setting, and I would 
onje
turethat the result is also valid in mu
h more general model sele
tion settings. Thissuggestion leads to the mu
h-used idea that the proposal distribution, while inpra
ti
e never equal to p(�k0 jk0; y), should be designed to approximate the full
onditional if possible. A natural starting point here is a Gaussian proposalmat
hing the 1st and 2nd order moments of the target 
onditional distribution.Using the same notation as Green's arti
le, we propose a nk0 -dimensional ve
torv from the standard normal density, and generate the proposed parameter as�k0 = �k0 +Bk0v, giving a

eptan
e ratioA = p(k0; �k0 jy)q(kjk0)q(v0)jB0kjp(k; �kjy)q(k0jk)q(v)jBk j : (2.1)In the 
ase that the target parameter 
onditional is indeed Gaussian with mo-ments �k0 and Bk0BTk0 this simpli�es toA = p(k0jy)q(kjk0)p(kjy)q(kjk0) ;and we have perfe
tly adapted Metropolis{Hastings on the marginal model indexspa
e. Thus, in the 
ase of a Gaussian target with 
orre
tly spe
i�ed Gaussianproposals, the a

eptan
e probabilities of this and Green's proposed method areidenti
al and hen
e the two samplers explore the model indexing spa
e equallyrapidly. The interesting possibilities with Green's proposal arise when the targetsare non-Gaussian, sin
e the a

eptan
e ratio of Green's method then appears toeliminate some of the variability in the a

eptan
e ratio by repla
ing q(v0)=q(v)in (2.1) with a single term q(u), whi
h is the density of a generally mu
h lowerdimensional Gaussian than either q(v) or q(v0). The question then arises as tohow the target ratios p(k0; �k0 jy)=p(k; �kjy) 
ompare between the two approa
hes,and it is 
lear that when the target is strongly non-Gaussian, either method maywell lead to high a

eptan
e probabilities. However, this is qualitative thinking
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t spa
e methods 23and it would be very interesting to dis
over how these two related approa
hesfared relative to one another in the examples of Se
tion 6.1 of Peter Green'sarti
le. Clearly the approximation of ea
h 
andidate model, even with a Gaus-sian, will require a great deal of work for large model spa
es. However, one 
anenvisage hybrid approa
hes in whi
h a substantial proportion of the parametersremain �xed in model jumping proposals, as in many standard reversible jumpimplementations to date, while a Gaussian approximation is applied to a moremanageable subset of parameters 
onditional on those �xed parameters.3 Produ
t spa
e methodsProdu
t spa
e methods provide another interesting viewpoint on model un
er-tainty, sin
e they allow simulation to be performed, at least 
on
eptually, ona �xed dimension spa
e. Various authors have shown that reversible jump al-gorithms 
an be obtained as spe
ial 
ases of produ
t spa
e methods (and vi
eversa); see Besag (1997), Godsill (2001) and Dellaportas et al. (2002).Very general 
lasses of model spa
e sampling 
an be written in the 
ompositemodel spa
e framework of Godsill (2001), whi
h is a produ
t spa
e represen-tation, allowing for any overlap between parameters of di�erent models that is
omputationally 
onvenient (for example, nested models and variable sele
tionmodels are easily en
oded within the framework). Consider a `pool' of N param-eters � = (�1; : : : ; �N ). A 
andidate model k 
an be des
ribed in terms of thispool of parameters by means of an indexing set I(k) = fi1(k); i2(k); : : : ; il(k)(k)gwhi
h 
ontains l(k) distin
t integer values between 1 and N . The parameters�I(k) of model k are then de�ned as �I(k) = (�i; i 2 I(k)). In the simplest 
asewe have I(k) = k, whi
h leads to a straightforward model sele
tion s
enario withno overlap between model parameters. In other 
ases, su
h as variable sele
tionor nested models, it may be 
onvenient to `share' parameters between more thanone model. The posterior distribution for the 
omposite model spa
e 
an nowbe expressed asp(k; �jy) = p(yjk; �I(k)) p(�I(k)jk) p(��I(k)j�I(k); k) p(k)p(y) ; (3.1)where ��I(k) = (�i; i 2 f1; : : : ; Ng � I(k)) denotes the parameters not used bymodel k. All of the terms in this expression are de�ned expli
itly by the 
hosenlikelihood and prior stru
tures ex
ept for p(��I(k)j�I(k); k), the `prior' for theparameters in the 
omposite model whi
h are not used by model k. It is easilyseen that any proper distribution 
an be assigned arbitrarily to these parameterswithout a�e
ting the required marginals for the remaining parameters. This�xed dimensionality distribution 
an now be used as the target for an MCMCalgorithm. One of the possible bene�ts of su
h a s
heme, as suggested in Godsill(2001), is that parameters from models other than the 
urrent model 
an inprin
iple be stored and used for 
onstru
tion of e�e
tive proposals when thoseother models are proposed again. There are, however, some basi
 pitfalls whi
h
an beset this type of approa
h. The �rst is storage: one wouldn't wish to
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t spa
e methodsstore all parameters of all models in memory if the pool of parameters � islarge. The se
ond is tra
tability. Consider the pure model sele
tion s
enarioin whi
h there is no overlap between parameters, i.e. I(k) = k. Now, it mightseem sensible to set the target density for some or all of the unused parametersequal to the data 
onditional posterior, in whi
h 
ase they 
an be updated atea
h iteration a

ording to any suitable MCMC s
heme and they will alwaysbe generating useful values for future model jumping proposals. This 
an bea
hieved by 
hoosing the arbitrary prior distribution for these parameters asfollows: p(��kj�k; k) = Yj 6=k p(�j jj; y):However, it is easily veri�ed that model jumping proposals under su
h a s
hemerequire the marginal model probabilities in the a

eptan
e ratio, and hen
e themethod is self-destroying as it requires us to know exa
tly one of the quantitieswe wish to estimate! Clearly the arbitrary prior probability should not be 
hosenin this intuitively reasonable way.Another approa
h whi
h might have similar bene�ts would be to assign somereasonable distributions for the arbitrary priors, su
h as a tra
table approxima-tion to the data 
onditional posterior distribution for those parameters, but toapply a very slowly mixing Markov 
hain when updating these parameters. Thiswould allow the parameters of ea
h model to retain some memory of their earlier
on�guration when that model was last sele
ted by the MCMC. A promisingapproa
h related to this 
on
ept has been devised by Brooks et al. (2000). Init they assume a nested stru
ture to the models, and augment the parameterspa
e with suÆ
ient auxiliary variables to make the total parameter spa
e equalin dimensionality to the most 
omplex 
andidate model. These auxiliary vari-ables are then slowly updated at ea
h iteration a

ording to an autoregressiveMarkov 
hain with a standard Gaussian stationary distribution. The auxiliaryvariables are then used dire
tly to generate deterministi
 model jumping propos-als to higher order models. The extra memory and persisten
e introdu
ed intothe 
hain in this way is shown to indu
e a better exploration of the tails of themodel order distribution for a graphi
al models example.More general s
hemes with this 
avour 
an easily be devised based on thegeneral produ
t spa
e framework. It may be reasonable, for example, to useone or more of the auxiliary parameters to help 
onstru
t a random proposalrather than a deterministi
 one. Another extension would address the memorystorage problems: rather than update all of the auxiliary parameters using aslowly mixing Markov 
hain, update only those parameters within some suitably
hosen `neighbourhood' of the 
urrently sele
ted model. The remaining auxiliaryparameters are sampled independently dire
tly from their target distribution,whi
h would be 
arefully 
hosen for tra
tability, and hen
e do not need to besampled until their 
orresponding model number is proposed.It seems reasonable that ideas of this sort 
an lead to improved performan
eof reversible jump algorithms. There will usually however be an in
reased burden
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omputational load and memory storage requirements, so it must remain to beseen whether performan
e improvements are suÆ
ient to merit the extra work.Trans-dimensional Bayesian nonparametri
s with spatialpoint pro
essesJuha HeikkinenFinnish Forest Resear
h Institute, Helsinki, Finland1 Introdu
tionPoint pro
esses are a 
lass of models where the notion of variable dimension isinherent. The main part of this dis
ussion is 
on
erned with the appli
ationof marked point pro
esses as prior models in nonparametri
 Bayesian fun
tionestimation, reformulating and revising earlier joint work with Elja Arjas and list-ing some other related work (Se
tion 2). A

ordingly, the dis
ussion is 
enteredon trans-dimensional modelling rather than on the simulation te
hniques them-selves, and 
onne
ts to some of the material in the 
hapters by Sylvia Ri
hardsonand Hurn, Husby and Rue. I shall end, however, with an example illustrating therole of the dimension-mat
hing requirement (Se
tion 3). The point made thereis rather marginal to Green's main message, but hopefully interesting and/orinstru
tive to modellers working with 
onstraints.2 Nonparametri
 Bayesian fun
tion estimationHeikkinen and Arjas (1998) introdu
ed a (trans-dimensional) nonparametri
Bayesian approa
h to the estimation of the intensity fun
tion of a spatial Poissonpro
ess. The approa
h is similar to that in the 
hange point and image analysisexamples of Green (1995), and 
an be dire
tly generalised to a wide variety offun
tion estimation problems (Heikkinen 1998). It has been applied to a prob-lem involving simultaneous interpolation, regression, and intensity estimation(Heikkinen and Arjas 1999), and 
losely related methods have been developedfor image analysis (Ni
holls 1998; M�ller and Skare 2001), multivariate regres-sion and 
lassi�
ation (Denison et al. 2002b), and disease mapping (Knorr-Heldand Ra�er 2000; Denison and Holmes 2001). The following paragraphs showhow I would now prefer to introdu
e the method.Consider the estimation of real valued surfa
es f : S ! R de�ned on abounded support S � R2. A trans-dimensional approximation of f is obtainedthrough its parametrisation by marked point pattern � = f(x1; y1); : : : ; (xk; yk)g,in whi
h the lo
ations are a simple point pattern x = fx1; : : : ; xkg on S with avariable number k of randomly lo
ated points, and the marks represent valuesyi = f�(xi) of the approximating fun
tion. To 
omplete the approximation, weapply some rough and simple inter/extrapolation rule to determine f�(s), s 2
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s with spatial point pro
essesS nx. By pointwise averaging over a large number of su
h rough approximations,varying the number and lo
ations of the points in x, we 
an then obtain asmooth estimate of f . With unbounded k the parameter spa
e is e�e
tivelyin�nite-dimensional and hen
e the inferen
e honestly nonparametri
, yet the
omputations 
an be handled by trans-dimensional MCMC.The inter/extrapolations of Heikkinen and Arjas (1998) were step fun
tionson the Voronoi tessellations of S generated by the lo
ation patterns x (see Hurnet al. this volume, Se
tion 2.2; S. Ri
hardson, this volume, Se
tion 3.1). However,Voronoi tessellations 
ould be repla
ed by the Delaunay or other more generaltriangulations (
f. Ni
holls 1998). In addition to the more 
exible geometry, tri-angular partitions o�er the opportunity of making the fun
tion approximationspie
ewise linear instead of pie
ewise 
onstant (see below). In the estimation ofsmooth fun
tions, I would prefer the 
omputationally simpler Delaunay trian-gulations, the greater 
exibility of other triangulations being more valuable inproblems like segmentation (Ni
holls 1998).Our prior of x was the homogeneous Poisson pro
ess, and large di�eren
esbetween nearby fun
tion values were penalised by a Markov random �eld priorfor yjx. This led to unne
essary 
ompli
ations with the normalising 
onstants,whi
h 
ould have been avoided by modelling the marked point pattern � dire
tlyas a nearest-neighbourMarkov point pro
ess with 
orrelated marks, as did M�llerand Skare (2001). Then the marginal prior of x is no longer a Poisson pro
ess,but that seems like a small pri
e to pay for an otherwise more tra
table model.Although Denison and Holmes (2001) deem this smoothing unne
essary in the�rst pla
e, I think that it should lead to qualitatively more reasonable individualapproximations of f , and thereby to more realisti
 inferen
es on its shape, forexample. For extrapolations beyond the 
onvex hull of the data, dependen
epriors seem essential.Motivated by su
h 
onsiderations, let me then sket
h an approa
h I would
urrently suggest. Assuming S to be a polygon, let � be a marked point pro
essin
luding lo
ations on the edges and verti
es of S as in the model of Ni
holls(1998). De�ne the prior density of � with respe
t to the distribution of theappropriate marked Poisson pro
ess by something likep(�) / �k exp��� Xxi�xxj(yi � yj)2�;where xi �x xj , if the tiles S(x;xi) 3 xi and S(x;xj) 3 xj of the Voronoitessellation generated by x are adja
ent. Finally, de�ne f� as that unique surfa
ewhi
h passes through all points (xi; yi) of � and is linear within ea
h triangle inthe Delaunay tessellation generated by x. If f 
an only take a �nite (and small)number of distin
t values, as in image 
lassi�
ation, for example, I would followM�ller and Skare (2001) in using the Voronoi step fun
tions and an extension
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esses 27like p(�) / �k exp��� Xxi�xxj 1(yi 6= yj)�of the Potts model, where 1 denotes the indi
ator fun
tion.Theoreti
ally, this approa
h works regardless of the dimension of S. How-ever, the e�ort needed both for the implementation and for the 
omputationsin
rease rapidly with the dimension; for an example, see the 3-d problem in reser-voir modelling ta
kled by M�ller and Skare (2001). Independen
e priors allowfor a 
omputationally feasible approa
h for moderate dimensional S (Denisonet al. 2002b), but Denison et al. (2002a) have found that they do not work wellin very high dimensions, either.3 On 
onstraints and dimension mat
hingIn most appli
ations of trans-dimensional MCMC, the major problem seemsto be �nding eÆ
ient proposal distributions. When there are 
onstraints inthe parameter spa
e, however, even the 
hoi
e of valid proposals may not betrivial. A typi
al 
ase in the fun
tion estimation 
ontext are problems involvinginterpolation (Heikkinen and Arjas 1999), of whi
h a toy example is given below.Consider the fun
tion estimation problem of Se
tion 2 with the 
onstraintf(s0) = f0 for some s0 2 S, and step fun
tion approximations f� taking 
onstantvalue yi on ea
h Voronoi tile:f�(s) = kXi=1 yi1fs 2 S(x;xi)g:Suppose we wish to implement the simplest possible sampler with two kinds ofmove proposal: death of one random point in the 
urrent � and birth of a newpoint (�; �) with a uniform random lo
ation � 2 S and mark � sampled fromsome distribution on R. In Green's formalism, we would then have r = 2k,r0 = 2k + 2, u = (�; �), and d0 = 0 for the birth move from � with k points to�0 = �[fug. But if s0 2 S(x[f�g; �), then the only proposal yielding a positivea

eptan
e probability would be the (one-dimensional) �0 = � [ (�; f0). Thiswould leave the mark � of u unused and hen
e violate the dimension-mat
hingrequirement.The 
on
rete 
onsequen
es of the failure in dimension-mat
hing are revealedonly when trying to work out the a

eptan
e probability for the death of (xi; yi)with s0 2 S(x;xi). For positive 
han
es of a

eptan
e, we are for
ed to proposefun
tion value f0 on that tile S(x n xi;xj) whi
h 
ontains s0 in the proposedtessellation. In other words, the death proposal is�0 = � n f(xi; yi); (xj ; yj)g [ (xj ; y0j);where y0j = f0. But if yj 6= f0, then our simple sampler 
annot reverse this move,be
ause it proposes y00j = y0j = f0 in the birth move from �0.
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s with spatial point pro
essesReturning to the birth move x0 = x[ � with s0 2 S(x0; �), the 
onsiderationsabove lead to the 
on
lusion that the dimension we 
annot use in proposing thefun
tion value on tile S(x0; �), that is, the random mark � of u, must be used toperturb the 
urrent fun
tion value yj(= f0) on the tile S(x;xj) 
ontaining s0.See Heikkinen and Arjas (1999) for the details of one su
h sampler.One might ask, why not just keep a �xed generating point (s0; f0) and avoidthe whole diÆ
ulty, but this would result in di�erent smoothing around s0 thanelsewhere.Additional referen
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