
1Trans-dimensional Markov hain Monte CarloPeter J. GreenUniversity of Bristol, UK1 IntrodutionReaders of this book will need no further onvining of the importane of Markovhain Monte Carlo (MCMC) in numerial alulations for highly struturedstohasti systems, and in partiular for posterior inferene in Bayesian sta-tistial models. Another hapter (Roberts, this volume) is devoted to disussionof some of the urrently important researh diretions in MCMC generally. Thishapter is more narrowly foussed on MCMC methods for what an be alled`trans-dimensional' problems, to borrow a niely apt phrase from Roeder andWasserman (1997): those where the dynami variable of the simulation, the`unknowns' in the Bayesian set-up, does not have �xed dimension.Statistial problems where `the number of things you don't know is one ofthe things you don't know' are ubiquitous in statistial modelling, both in tradi-tional modelling situations suh as variable seletion in regression, and in morenovel methodologies suh as objet reognition, signal proessing, and Bayesiannonparametris. All suh problems an be formulated generially as a matterof joint inferene about a model indiator k and a parameter vetor �k, wherethe model indiator determines the dimension nk of the parameter, but this di-mension varies from model to model. Almost invariably in a frequentist setting,inferene about these two kinds of unknown is based on di�erent logial prin-iples, but, at least formally, the Bayes paradigm o�ers the opportunity of asingle logial framework | it is the joint posterior p(k; �kjY ) of model indiatorand parameter given data Y that is the basis for inferene. How an this beomputed?We set the joint inferene problem naturally in the form of a simple Bayesianhierarhial model. We suppose given a prior p(k) over models k in a ountableset K, and for eah k, a prior distribution p(�kjk) and a likelihood p(Y jk; �k)for the data Y . For de�niteness and simpliity of exposition, we suppose thatp(�kjk) is a density with respet to nk-dimensional Lebesgue measure, and thatthere are no other parameters, so that where there are parameters ommon toall models these are subsumed into eah �k 2 Rnk . Additional parameters,perhaps in additional layers of a hierarhy, are easily dealt with. Note that inthis hapter, all probability distributions are proper.



2 Trans-dimensional Markov hain Monte CarloThe joint posteriorp(k; �kjY ) = p(k)p(�kjk)p(Y jk; �k)Pk02K R p(k0)p(�0k0 jk0)p(Y jk0; �0k0 )d�0k0an always be fatorised asp(k; �kjY ) = p(kjY )p(�kjk; Y );that is as the produt of posterior model probabilities and model-spei� param-eter posteriors. This identity is very often the basis for reporting the inferene,and in some of the methods mentioned below is also the basis for omputation.It is important to appreiate the generality of this basi formulation. Inpartiular, note that it embraes not only genuine model-hoie situations, wherethe variable k indexes the olletion of disrete models under onsideration,but also settings where there is really a single model, but one with a variabledimension parameter, for example a funtional representation suh as a serieswhose number of terms is not �xed. In the latter ase, arising sometimes inBayesian nonparametris, for example, k is unlikely to be of diret inferentialinterest.It an be argued that responsible adoption of a Bayesian hierarhial modelof the kind introdued above presupposes that, for example, parameter priorsp(�kjk) should be ompatible in the sense that inferene about funtions of pa-rameters that are meaningful in several models should be approximately invari-ant to k. Suh ompatibility ould in priniple be exploited in the onstrutionof MCMC methods, although I am not aware of general methods for doing so.However, it is philosophially tenable that no suh ompatibility is present, andwe shall not assume it.Trans-dimensional MCMC has many appliations other than to Bayesianstatistis. Muh of what follows will apply equally to them all; however, forsimpliity, I shall use the Bayesian motivation and terminology throughout.In Setion 2, reversible jump MCMC is disussed, and this is related to othermodel-jumping approahes in Setion 3. The following setion treats alternativesto model-jumping, and Setion 5 disusses and analyses some of the issues in-volved in hoosing between the within- and aross-model approahes. In Setion6, a simple fully-automated reversible jump sampler is introdued, and �nallySetion 7 notes some reent methodologial extensions.2 Reversible jump MCMCIn the diret approah to omputation of the joint posterior p(k; �kjY ) viaMCMC we onstrut a single Markov hain simulation, with states of the form(k; �k); we might all this an aross-model simulation. We address other ap-proahes in later setions.The state spae for suh an aross-model simulation is Sk2K(fkg � Rnk );mathematially, this is not a partiularly awkward objet, and our onstrution



Trans-dimensional Markov hain Monte Carlo 3involves no espeially hallenging novelties. However, suh a state spae is atleast a little non-standard! Formally, our task is to onstrut a Markov hainon a general state spae with a spei�ed limiting distribution, and as usual inBayesian MCMC for omplex models, we use the Metropolis{Hastings paradigmto build a suitable reversible hain. As we see in the next subsetion, on the faeof it, this requires measure-theoreti notation, whih may be unwelome to somereaders. The point of the `reversible jump' framework is to render the measuretheory invisible, by means of a onstrution using only ordinary densities. Infat, in the formulation given below, di�erent and I hope improved from that ofGreen (1995), even the fat that we are jumping dimensions beomes essentiallyinvisible!2.1 Metropolis{Hastings on a general state spaeWe wish to onstrut a Markov hain on a state spae X with invariant distri-bution �. As usual in MCMC we will onsider only reversible hains, so thetransition kernel P satis�es the detailed balane onditionZ(x;x0)2A�B �(dx)P (x; dx0) = Z(x;x0)2A�B �(dx0)P (x0; dx) (2.1)for all Borel sets A;B � X . In Metropolis{Hastings, we make a transition by�rst drawing a andidate new state x0 from the proposal measure q(x; dx0) andthen aepting it with probability �(x; x0), to be derived below. If we rejet, westay in the urrent state, so that P (x; dx0) has an atom at x. This ontributesthe same quantity RA\B P (x; fxg)�(dx) to eah side of (2.1); subtrating thisleavesZ(x;x0)2A�B �(dx)q(x; dx0)�(x; x0) = Z(x;x0)2A�B �(dx0)q(x0; dx)�(x0; x): (2.2)It an be shown (Green 1995; Tierney 1998) that �(dx)q(x; dx0) is dominated bya symmetri measure � on X � X ; let its density (Radon{Nikodym derivative)with respet to this � be f . Then (2.2) beomesZ(x;x0)2A�B �(x; x0)f(x; x0)�(dx; dx0) = Z(x;x0)2A�B �(x0; x)f(x0; x)�(dx0; dx)and, using the symmetry of �, this is learly satis�ed for all Borel A;B if�(x; x0) = min�1; f(x0; x)f(x; x0)� :This might be written more informally in the apparently familiar form�(x; x0) = min�1; �(dx0)q(x0; dx)�(dx)q(x; dx0) � : (2.3)



4 Trans-dimensional Markov hain Monte Carlo2.2 A onstrutive representation in terms of random numbersFortunately, the apparent abstration in this presription an be irumventedin most ases. By onsidering how the transition will be implemented in aomputer program, the dominating measure and Radon{Nikodym derivativesan be generated impliitly. Take the ase where X � Rd, and suppose � hasa density (also denoted �) with respet to d-dimensional Lebesgue measure. Atthe urrent state x, we generate, say, r random numbers u from a known jointdensity g, and then form the proposed new state as some suitable deterministifuntion of the urrent state and the random numbers: x0 = h(x; u), say. Theleft-hand side of (2.2) an then be written as an integral with respet to (x; u):Z(x;x0)2A�B �(x)g(u)�(x; x0) dx du:The reverse transition from x0 to x would be made with the aid of randomnumbers u0 � g0 giving x = h0(x0; u0). If the transformation from (x; u) to (x0; u0)is a di�eomorphism (the transformation and its inverse are di�erentiable), thenwe an �rst write the right-hand side of (2.2) as an integral with respet to(x0; u0), and then apply the standard hange-of-variable formula. We then seethat the (d+ r)-dimensional integral equality (2.2) holds if�(x)g(u)�(x; x0) = �(x0)g0(u0)�(x0; x) �����(x0; u0)�(x; u) ���� ;where the last fator is the Jaobian of the di�eomorphism from (x; u) to (x0; u0).Thus, a valid hoie for � is�(x; x0) = min�1; �(x0)g0(u0)�(x)g(u) �����(x0; u0)�(x; u) ����� ; (2.4)involving only ordinary joint densities.While this reversible jump formalism perhaps is a little indiret, it proves aexible framework for onstruting quite omplex moves using only elementaryalulus. In partiular, the possibility that r < d overs the ase, typial inpratie, that given x 2 X , only a lower-dimensional subset of X is reahablein one step. (The Gibbs sampler is the best-known example of this, sine inthat ase only some of the omponents of the state vetor are hanged at atime, although the formulation here is more general as it allows the subset notto be parallel to the oordinate axes.) Separating the generation of the randominnovation u and the alulation of the proposal value through the deterministifuntion x0 = h(x; u) is deliberate; it allows the proposal distribution q(x;B) =Rx02B h(x; u)g(u)du to be expressed in many di�erent ways, for the onvenieneof the user.2.3 The trans-dimensional aseHowever, the main bene�t of this formalism is that expression (2.4) applies,without hange, in a variable dimension ontext, if we use the same symbol �(x)



Trans-dimensional Markov hain Monte Carlo 5for the target density whatever the dimension of x in di�erent parts of X . Pro-vided that the transformation from (x; u) to (x0; u0) remains a di�eomorphism,the individual dimensions of x and x0 an be di�erent. The dimension-jumpingis indeed `invisible'.In this setting, suppose the dimensions of x; x0; u and u0 are d; d0; r and r0respetively, then we have funtions h : Rd�Rr ! Rd0 and h0 : Rd0�Rr0 ! Rd,used respetively in x0 = h(x; u) and x = h0(x0; u0). For the transformation from(x; u) to (x0; u0) to be a di�eomorphism requires that d + r = d0 + r0, so-alled`dimension-mathing'; if this equality failed, the mapping and its inverse ouldnot both be di�erentiable.2.4 Details of appliation to the model-hoie problemReturning to our generi model-hoie problem, we wish to use these reversiblejump moves to sample the spae X = Sk2K(fkg�Rnk ) with invariant distribu-tion �, whih here is p(k; �kjY ).Just as in ordinary MCMC, we typially need multiple types of moves totraverse the whole spae X . Eah move is a transition kernel reversible withrespet to �, but only in ombination do we obtain an ergodi hain. The moveswill be indexed by m in a ountable set M, and a partiular move m proposesto take x = (k; �k) to x0 = (k0; �0k0) or vie versa for a spei� pair (k; k0); wedenote fk; k0g by Km. The detailed balane equation (2.2) is replaed byZ(x;x0)2A�B �(dx)qm(x; dx0)�m(x; x0) = Z(x;x0)2A�B �(dx0)qm(x0; dx)�m(x0; x)for eah m, where now qm(x; dx0) is the joint distribution of move type m anddestination x0. The omplete transition kernel is obtained by summing over m,so that for x 62 B, P (x;B) = PM RB qm(x; dx0)�m(x; x0), and it is easy to seethat (2.1) is then satis�ed.The analysis leading to (2.3) and (2.4) is modi�ed orrespondingly, and yields�m(x; x0) = min�1; �(x0)�(x) jm(x0)jm(x) g0m(u0)gm(u) �����(x0; u0)�(x; u) ����� :Here jm(x) is the probability of hoosing move type m when at x, the variablesx; x0; u; u0 are of dimensions dm; d0m; rm; r0m respetively, with dm + rm = d0m +r0m, we have x0 = hm(x; u) and x = h0m(x0; u0), and the Jaobian has a formorrespondingly depending on m.Of ourse, when at x = (k; �k), only a limited number of moves m will typi-ally be available, namely those for whih k 2 Km. With probability1�Pm:k2Km jm(x) no move is attempted.2.5 Some remarks and rami�ationsIn understanding the reversible jump framework, it may be helpful to stress thekey role played by the joint state-proposal equilibrium distributions. The fatthat the degrees of freedom in these joint distributions are unhanged when x and



6 Trans-dimensional Markov hain Monte Carlox0 are interhanged allows the possibility of reversible jumps aross dimensions,and these distributions diretly determine the move aeptane probabilities.Note that the framework gives insights into Metropolis{Hastings that applyquite generally. State-dependent mixing over a family of transition kernels ingeneral infringes detailed balane, but is permissible if, as here, the move prob-abilities jm(x) enter properly into the aeptane probability alulation. Notealso the ontrast between this randomised proposal mehanism, and the relatedidea of mixture proposals, where the aeptane probability does not dependon the move atually hosen; see the disussion in Besag et al. (1995, appendix1). Contrary to some aounts that onnet it with the jump in dimension, theJaobian omes into the aeptane probability simply through the fat that theproposal destination x0 = h(x; u) is spei�ed indiretly.Finally, note that in a large lass of problems involving nested models, theonly dimension hange neessary is the addition or deletion of a omponentof the parameter vetor (think of polynomial regression, or autoregression ofvariable order). In suh ases, omission of a omponent is often equivalent tosetting a parameter to zero. These problems an be handled in a seemingly moreelementary way, through allowing proposal distributions with an atom at zero:the usual Metropolis{Hastings formula for the aeptane probability holds fordensities with respet to arbitrary dominating measures, so the reversible jumpformalism is not expliitly needed. Nevertheless, it leads to exatly the samealgorithm.Other authors have provided di�erent pedagogial desriptions of reversiblejump. Waagepetersen and Sorensen (2001) provide a tutorial following the linesof Green (1995) but in muh more detail, and Besag (1997, 2000) gives a novelformulation in whih variable dimension notation is irumvented by embeddingall �k within one ompound vetor; this has something in ommon with theprodut-spae formulations in the next subsetion.3 Relations to other aross-model approahesSeveral alternative formalisms for aross-model simulation are more or less loselyrelated to reversible jump.Jump di�usion. In addressing hallenging omputer vision appliations, Gre-nander and Miller (1994) proposed a sampling strategy they termed jump di�u-sion. This omprised two kinds of move | between-model jumps, and within-model di�usion aording to a Langevin stohasti di�erential equation. Sinein pratie, ontinuous-time di�usion has to be approximated by a disrete-timesimulation, they were in fat using a trans-dimensional Markov hain. Had theyorreted for the time disretisation by a Metropolis{Hastings aept/rejet de-ision (giving a so-alled Metropolis-adjusted Langevin algorithm or MALA)(Besag 1994), this would have been an example of reversible jump.Phillips and Smith (1996) applied jump-di�usion reatively to a variety ofBayesian statistial tasks, inluding mixture analysis, objet reognition and



Trans-dimensional Markov hain Monte Carlo 7variable seletion.Point proesses, with and without marks. Point proesses form a naturalexample of a distribution with variable-dimension support, sine the number ofpoints in view is random; in the basi ase, a point has only a loation, but moregenerally may be aompanied by a mark, a random variable in a general spae.A ontinuous time Markov hain approah to simulating ertain spatial pointproesses, by regarding them as the invariant distributions of spatial birth-and-death proesses, was suggested and investigated by Preston (1977) and Rip-ley (1977). More reently, Geyer and M�ller (1994) proposed a Metropolis{Hastings sampler, as an alternative to using birth-and-death proesses; theironstrution is a speial ase of reversible jump.Stephens (2000) notes that various trans-dimensional statistial problemsan be viewed as abstrat marked point proesses: in these models, the items ofwhih there are a variable number are regarded as marked points. For examplein a normal mixture model the points represent the mean{variane pairs of theomponents, marked with the omponent weights. Stephens borrows the birth-and-death simulation idea to develop a methodology for �nite mixture analysis,and also suggests that the approah appears to have muh wider appliation,iting hange point analysis and regression variable seletion as partially workedexamples. The key feature of these three settings that allows the approah towork is the pratiability of integrating out latent variables so that the likelihoodis fully available. See also Hurn et al. (2001) for appliation to mixtures ofregressions. Capp�e et al. (2001) have reently given a rather omplete analysisof the relationship between reversible jump and ontinuous time birth-and-deathsamplers.Produt-spae formulations. Several relatives of reversible jump work in aprodut spae framework, that is, one in whih the simulation keeps trak ofall �k, not only the `urrent' one. The state spae is therefore K � 
k2KRnkinstead of Sk2K(fkg�Rnk). This has the advantage of irumventing the trans-dimensional harater of the problem, at the prie of requiring that the targetdistribution be augmented to model all �k simultaneously. For some variantsof this approah, this is just a formal devie, for others it leads to signi�antlyextra work.Let ��k denote the omposite vetor onsisting of all �l; l 6= k atenatedtogether. Then the joint distribution of (k; (�l : l 2 K); Y ) an be expressed asp(k)p(�kjk)p(��kjk; �k)p(Y jk; �k); (3.1)sine we make the natural assumption that p(Y jk; (�l : l 2 K)) = p(Y jk; �k).It is easily seen that the third fator p(��kjk; �k) has no e�et on the jointposterior p(k; �kjY ); the hoie of these onditional distributions, whih Carlinand Chib (1995) all `pseudo-priors', is entirely a matter of onveniene, but mayinuene the eÆieny of the resulting sampler.



8 Trans-dimensional Markov hain Monte CarloCarlin and Chib (1995) adopted pseudo-priors that were onditionally inde-pendent: p(��kjk; �k) = Ql6=k p(�ljk), and assumed p(�ljk) does not depend onk for k 6= l. They used a Gibbs sampler, updating k and all �l in turn. Thisevidently involves sampling from the pseudo-priors, and they therefore proposeto design these pseudo-priors to ensure reasonable eÆieny, whih requires theirapproximate mathing to the posteriors: p(�ljk) � p(�ljl; Y ).Green and O'Hagan (1998) pointed out both that Metropolis{Hastings movesould be made in this setting, and that in any ase there was no need to updatef�l; l 6= kg to obtain an irreduible sampler. In this form the pseudo-priors areonly used in omputing the update of k. Dellaportas et al. (2002) proposed andinvestigated a `Metropolised Carlin and Chib' approah, in whih joint modelindiator/parameter updates were made, and in whih it is only neessary toresample the parameter vetors for the urrent and proposed models.Godsill (2001) introdues a general `omposite model spae' framework thatembraes all of these methods, inluding reversible jump, failitating omparisonsbetween them. He devised the formulation (3.1), or rather, a more general versionin whih the parameter vetors �k are allowed to overlap arbitrarily, eah �kbeing identi�ed with a partiular sub-vetor of one ompound parameter. Thisframework helps to reveal that a produt-spae sampler may or may not entailpossibly umbersome additional simulation, updating parameters that are notpart of the `urrent' model. It also gives useful insight into some of the importantfators governing the performane of reversible jump, and Godsill o�ers somesuggestions on proposal design.Godsill's formulation deserves further attention, as it provides a useful lan-guage for omparing approahes, and in partiular examining one of the en-tral unanswered questions in trans-dimensional MCMC. Suppose the simulationleaves model k and later returns to it. With reversible jump, the values of �kare lost as soon as we leave k, while with some versions of the produt-spaeapproah, the values are retained until k is next visited. Intuitively either strat-egy has advantages and disadvantages for sampler performane, so whih is tobe preferred?4 Alternatives to joint model-parameter samplingThe diret approah of a single aross-model simulation is in many ways themost appealing, but alternative indiret methods that treat the unknowns k and�k di�erently should not be negleted.Integrating out the parameters. If in eah model k, the prior is onjugatefor the likelihood, then p(�kjk; Y ) may be expliitly available, and thene an bealulated the marginal likelihoodsp(Y jk) = p(�kjk)p(Y jk; �k)p(�kjk; Y )



Trans-dimensional Markov hain Monte Carlo 9and �nally the posterior probabilities p(kjY ) / p(k)p(Y jk). In the very limitedases where this is possible, Bayesian inferene about k, and about �k given k,an be onduted separately, and trans-dimensional simulations are not needed.The approah has been taken a little further by Godsill (2001), who onsidersases of `partial analyti struture', where some of the parameters in �k may beintegrated out, and the others left unhanged in the move that updates themodel, to give an aross-model sampler with probable superior performane.Within-model simulation. If samplers for the within-model posteriors p(�kjY; k) are available for eah k, then joint posterior inferene for (k; �k) an beonstruted by ombining separate simulations onduted within eah model.See Carlin and Louis (1996, x6.3.1) for more detailed disussion.The posterior p(�kjY; k) for the parameters �k is in any ase a within-modelnotion, and is the target for an ordinary Bayesian MCMC alulation for modelk. Sine p(k1jY )p(k0jY ) = p(k1)p(k0) p(Y jk1)p(Y jk0)(the seond fator being the Bayes fator for model k1 vs. k0), to �nd the poste-rior model probabilities p(kjY ) for all k it is suÆient to estimate the marginallikelihoods p(Y jk) = Z p(�k; Y jk) d�kseparately for eah k, using individual MCMC runs. Several di�erent methodshave been devised for this task.Noting that p(Y jk) an be expressed as fR [p(�kjk; Y )=p(Y jk; �k)℄ d�kg�1 ormore diretly as R p(Y jk; �k)p(�kjk) d�k, leads respetively to the estimatesbp1(Y jk) = N, NXt=1 np(Y jk; �(t)k )o�1 and bp2(Y jk) = N�1 NXt=1 p(Y jk; �(t)k );based on MCMC samples �(1)k ; �(2)k ; : : : from the posterior p(�kjY; k) and theprior p(�kjk), respetively. Both of these are simulation-onsistent, but havehigh variane, with possibly few terms ontributing substantially to the sumsin eah ase. Composite estimates, based like bp1 and bp2 on the importanesampling identity Ep(f) = Eq(fp=q), perform better, inluding those of Newtonand Raftery (1994) and Gelfand and Dey (1994). For example, Newton andRaftery propose to simulate from a mixture ep(�k;Y; k) of the prior and posterior,and use bp3(Y jk) = PNt=1 p(Y jk; �(t)k )w(�(t)k )PNt=1 w(�(t)k ) ;where w(�k) = p(�kjk)=ep(�k;Y; k).Chib (1995) has introdued new, indiret, estimates of the marginal likeli-hood based on the identity p(Y jk) = p(Y jk; �?k)p(�?k jk)=p(�?kjk; Y ) for any �xed



10 Trans-dimensional Markov hain Monte Carloparameter point �?k. The fators in the numerator are available, and in ontextswhere the parameter an be deomposed into bloks with expliit full ondition-als, the denominator an be estimated using simulation alulations that usethe same Gibbs sampling steps as the posterior simulation. Note, however, thatNeal (1999) has demonstrated that Chib's appliation of this idea to mixturemodels is inorret. Chib and Jeliazkov (2001) extend the idea to ases whereMetropolis{Hastings is needed.5 Some issues in hoosing a sampling strategySeveral studies have addressed the strengths and weaknesses of reversible jumpMCMC and the other trans-dimensional setups above ompared to within-modelsimulations that ompute marginal likelihoods and thene Bayes fators. Par-tiularly noteworthy are Dellaportas et al. (2002), Godsill (2001) and Han andCarlin (2001). Eah of these disusses some of the issues involved and providesomparisons of implementations and performane on test problems, although,understandably in the present state of our knowledge with these methods, it ishard to see any of these as entirely de�nitive.One of the key matters inuening the hoie here is the number of modelsto be entertained, taking aount of the degree of homogeneity between them.The ideal situation for the `within-model' strategy would be a ase where themodels are all of a di�erent harater, and fully-tested samplers with aeptableperformane are already available for eah. In suh a ase, building an aross-model sampler ould be very laborious ompared to adding marginal likelihoodalulations to eah model separately.Some authors have reorded poor performane with reversible jump methods.Sine reversible jump algorithms embrae all Metropolis{Hastings methods forthe aross-model state spae, it is hard to believe that there are no methods inthis huge lass that would give aeptable performane. It would be fairer tosay that existing examples of reversible jump implementations may be poor tem-plates for onstruting samplers in some new situations. A diÆulty is that theaross-model state spae may be hard to visualise so that some of the intuitionthat guides onstrution of samplers in simpler spaes is not available.Others have deemed reversible jump methods umbersome to onstrut anddiÆult to tune. There seems to be a need for further methodologial work, de-veloping broader lasses of aross-model samplers, with assoiated visualisationtehniques, to assist in onstrution and tuning. Very reent work by Brooks etal. (2000) may be a good step in this diretion; see Setion 7.2. Of ourse, asin other domains for MCMC, fully-automated sampler onstrution would be atremendous advantage: a very limited step towards this is introdued in Setion6 below.Finally, the aross-model approah does have another potential bene�t |the possibility that jumping models an improve mixing. This is disussed next.



Trans-dimensional Markov hain Monte Carlo 115.1 Is it good to jump?There are various not entirely substantiated laims in the literature to the ef-fet that jumping between parameter subspaes is either inherently damaging toMCMC performane and should therefore be avoided where possible, or alterna-tively that it is helpful for performane, and might even be attempted when itis not stritly neessary.For example, Rihardson and Green (1997) desribe a simple experiment,illustrated in their Fig. 9, demonstrating that in a partiular example of a mixtureproblem with a strongly multimodal posterior, mixing is learly improved byusing a trans-dimensional sampler, while Han and Carlin (2001) laim to have`intuition that some gain in preision should arue to MCMC methods thatavoid a model spae searh'.In truth, the proper answer is `it depends', but some simple analysis doesreveal some of the issues. There are three main situations that might be on-sidered: in the �rst, we require full posterior inferene about (k; �k). A seondpossibility is that we wish to make within-model inferene about �k separately,for eah of a (perhaps small) set of values of k. The third ase is where k is really�xed, and the other models are ruled out a priori. This third option is learly theleast favourable for trans-dimensional samplers: visits of the (k; �k) hain to the`wrong' models are wasted from the point of view of extrating useful posteriorinformation; let us try to analyse whether superior mixing in these other modelsan nevertheless make it worthwhile to use a trans-dimensional sampler.5.2 The two-model aseFor simpliity, we suppose there are just two models, k = 1 and 2, and let �kdenote the distribution of �k given k: only �1 is of interest. We have transitionkernels Q11, Q22, with �kQkk = �k for eah k; (we use a notation apparentlyaimed at the �nite state spae ase, but it is quite general: for example, �Qmeans the probability measure (�Q)(B) = R �(dx)Q(x;B)). We now onsiderthe option of also allowing between-model transitions, with the aid of kernels Q12and Q21; for realism, these are improper distributions, integrating to less than1, reeting the fat that in pratie aross-model Metropolis{Hastings movesare frequently rejeted. When a move is rejeted, the hain does not move,ontributing a term to the `diagonal' of the transition kernel; thus we supposethere exist diagonal kernelsD1 andD2, and we have the global balane onditionsfor the aross-model moves: �1D1 + �2Q21 = �1 and �2D2 + �1Q12 = �2.Assuming that we make a random hoie between the two moves availablefrom eah state, � and � being the probabilities of hoosing to attempt thebetween-model move in models 1, 2 respetively, the overall transition kernel forthe aross-model sampler isP = � (1� �)Q11 + �D1 �Q12�Q21 (1� �)Q22 + �D2 �using an obvious matrix notation. The invariant distribution is easily seen to be



12 Trans-dimensional Markov hain Monte Carlo� = (�1; (1� )�2), where  = �=(�+ �).Now suppose we run the Markov hain given by P , but look at the stateonly when in model 1. By standard Markov hain theory, the resulting hainhas kernel eQ11 = (1��)Q11+�D1+�Q12fI � (1��)Q22��D2g�1�Q21. Theomparison we seek is that between using Q11 or the more ompliated strategythat amounts to using eQ11, but we must take into aount di�erenes in ostsof omputing. Suppose that exeuting Q11 or Q22 has unit ost per transition,while attempting and exeuting the aross-model moves has ost  times greater.Then, per transition, the equilibrium ost of using P is (1 � �) + � + (1 �)�+(1� )(1��), and this gives on average  visits to model 1. The relativeost in omputing resoures of using eQ11 instead of Q11 therefore simpli�es to(1� �) + 2�+ �(1� �)=� (using the relationship � = (1� )�).If we hoose to measure performane by asymptoti variane of a spei�ergodi average, then we have integrated autoorrelation times � and e� for Q11and eQ11 respetively, and jumping models is a good idea if� < e�f(1� �) + 2�+ �(1� �)=�g:Of ourse, e� depends on � and �.5.3 Finite state spae exampleIt is interesting to ompute these terms for toy �nite-state-spae examples wherethe eigenvalue alulations an be made expliitly. For example, taking D1 =D2 = 0:8I , orresponding to an 80% rejetion rate for between-model moves, andall the Q matries to be symmetri reeting random walks on m = 10 states,with di�ering probabilities of moving, to model di�erently `stiky' samplers,spei�ally (Q11)i;i�1 = 0:03, (Q12)i;i�1 = 0:2� 0:1, (Q21)i;i�1 = 0:2� 0:1, and(Q22)i;i�1 = 0:3, we �nd that model jumping is worthwhile for all  up to about15, with optimal � � 1 and � � 0:1. This is a situation where the rapid mixingin model 2 ompared to that in model 1 justi�es the expense of jumping from 1to 2 and bak again.5.4 Tempering-by-embeddingSuh onsiderations raise the possibility of arti�ially embedding a given statis-tial model into a family indexed by k, and onduting an aross-model simula-tion simply to improve performane | that is, as a kind of simulated tempering(Marinari and Parisi 1992). A partiular example of the bene�t of doing so wasgiven by Hodgson (1999) in onstruting a sampler for restoration of ion hannelsignals. A straightforward approah to this task gave poor mixing, essentiallybeause of high posterior orrelation between the model hyperparameters andthe hidden binary signal. This orrelation is higher when the data sequene islonger, so a tempering-by-embedding solution was to break the data into bloks,with the model hyperparameters allowed to hange between adjaent bloks. Thepart of the prior ontrolling this arti�ial model elaboration was adjusted em-pirially to give moderately high rates of visiting the real model, while spending



Trans-dimensional Markov hain Monte Carlo 13suÆient time in the arti�ial heterogeneous models for the harmful orrelationto be substantially diluted.Further evidene that model-jumping an provide e�etive tempering, ad-mittedly in a somewhat ontrived setting, was provided by Rihardson andGreen (1997). They ompared �xed-k and variable-k samplers for a normal mix-ture problem with k omponents, applied to a symmetrised bimodal data set. Inthis ase, there was substantial posterior support for k = 2 and 4; MCMC-basedinferene about parameters onditional on k = 3 was greatly superior using thevariable-k sampler.6 An automati generi trans-dimensional samplerThe possibility of automating the onstrution of a MCMC sampler for any giventarget distribution is attrative but elusive. It would be a tremendous pratialadvantage if the user ould just speify the target in algebrai form, perhapstogether with a few numerial onstants suh as starting values, and leave theomputer both to onstrut an algorithm and then run it to reate a reliablesample.The nearest we an ome to this ideal at present, for sampling from a�xed-dimensional density, is the random-walk Metropolis (RWM) sampler (seeRoberts, this volume), in the most simple form where all variables are simul-taneously updated. Other possibilities, requiring a little more user input, areLangevin methods, or the hybrid samplers of Duane et al. (1987). RWM is nota panaea. From a theoretial perspetive, it is imperfet sine even geometriergodiity is not guaranteed, as it requires onditions on the relative size of thetails of the target and proposal densities. In fat, no kind of ergodiity is ertain,sine there may be holes in the support of the target and/or the proposal densitywhih ould prevent irreduibility, but suh pathologies are easily avoided. Thereis also the important pratial onsideration that updating all variables at oneprevents the exploitation of fatorisations of the target that make the aeptaneprobabilities for lower-dimensional updates partiularly heap to ompute.In spite of these drawbaks, the RWM methods are useful and it would bevaluable to have an analogous lass of methods for trans-dimensional problems,partiularly for exploratory use. In this setion, we propose a rather naive ap-proah to this quest, but as experiments show, the results are quite promising.Suppose that for eah model k, we are given a �xed nk-vetor �k and a�xed nk �nk-matrix Bk. Consider the situation where we are urrently in state(k; �k) and have proposed a move to model k0, drawn from some transition matrix(rk;k0 ). The form of the proposed new parameter vetor depends on whether nk0is less than, equal to, or more than nk. We set:�0k0 =8>><>>: �k0 +Bk0 [RB�1k (�k � �k)℄nk01 if nk0 < nk�k0 +Bk0RB�1k (�k � �k) if nk0 = nk�k0 +Bk0R� B�1k (�k � �k)u � if nk0 > nk :



14 Trans-dimensional Markov hain Monte CarloHere [� � � ℄m1 denotes the �rst m omponents of a vetor, R is a �xed orthogonalmatrix of order maxfnk; nk0g, and u is a (nk0 � nk)-vetor of random numberswith density g(u).Note that if nk0 � nk, the proposal is deterministi (apart from the hoie ofk0). Sine everything is linear, the Jaobian is trivially alulated: if nk0 > nk,we have ���� �(�k0)�(�k; u) ���� = jBk0 jjBk j :Thus the aeptane probability is minf1; Ag, whereA = p(k0; �0k0 jy)p(k; �jy) rk0 ;krk;k0 jBk0 jjBkj �8<: g(u) if nk0 < nk1 if nk0 = nkg(u)�1 if nk0 > nk :Sine it is orthogonal, the matrix R plays no role in this alulation.If the model-spei� targets p(�kjk; y) were normal distributions, with means�k and varianes BkBTk , if the innovation variables u were standard normal,and if we ould hoose rk;k0=rk0;k = p(k0jY )=p(kjY ), these proposals would al-ready be in detailed balane, with no need to ompute the Metropolis{Hastingsaept/rejet deision. This is the motivation for the idea.This suggests that, providing the p(�kjk; y) are reasonably unimodal, withmean and variane approximately equal to �k and BkBTk , this simple samplermay be e�etive. A simple modi�ation, likely to give performane more robustto heavy tails in the targets, would be to use t-distributions in plae of thenormals for u. Another modi�ation, plausibly likely on general grounds toimprove mixing, is to randomise over the orthogonal matrix R, or, more simply,take R to be a random permutation matrix. By the usual argument aboutrandomised proposals (Besag et al. 1995, Appendix 1), this randomisation anbe ignored when alulating the aeptane probability.In appliations, we are only likely to have approximations to the mean andvarianes of p(�kjk; y) when we an ondut pilot runs within eah model sepa-rately | thus limiting the idea to ases where the set of models K is �nite andsmall. In our implementation, we loop over these models and perform a shortrun of RWM on eah to estimate the means �k and varianes BkBTk . We then�nd the lower triangular square root of the variane Bk (and its determinant)by Cholesky deomposition; the advantage of using a lower triangular Bk is thatwe an use forward substitution to multiply B�1k into a vetor.Finally, the idea might have broader appliability if the pilot runs were usedalso to detet and orret gross departures from normality | perhaps a trans-formation to redue skewness ould be estimated, for example. We have notexplored suh modi�ations.6.1 ExamplesThis method has been implemented as a stand-alone Fortran program, availablefrom the author by email (P.J.Green�bris.a.uk), whih alls a funtion writ-



Trans-dimensional Markov hain Monte Carlo 15ten by the user to ompute log p(k; �k; y). The only other information requiredabout the problem, also provided by this funtion, are the number of models,their dimensions, and rough settings for the entre and spread of eah variable,used for initial values and spread parameters for the RWM moves. The odeis set up to alternate between model-jumping moves as desribed above, andwithin-model moves by RWM.We have tried the approah on two non-trivial examples; the odes for thesetwo were idential apart from the information just desribed.(a) Variable seletion in a small logisti regression problem. Dellapor-tas et al. (2002) illustrate their omparisons between model-jumping algorithmson a small data set. This is a 2 � 2 fatorial experiment with a binomiallydistributed response variable. All 5 interpretable models are entertained, withnumbers of parameters (nk) equal to 1, 2, 2, 3 and 4 respetively. We followDellaportas et al. exatly in terms of prior settings, et. One million sweepsof the automati sampler, many more than is needed for reliable results, takesabout 18 seonds on a 800MHz PC. The aeptane rate for the model-jumpingmoves was 29.4%, and the integrated autoorrelation time for estimating E(kjy)was estimated by Sokal's method (Green and Han 1992) to be 2.90. The poste-rior model probabilities were omputed to be (0.005, 0.493, 0.011, 0.439, 0.052),onsistent with the results of Dellaportas et al.(b) Change point analysis for a point proess. We revisit the hangepoint analysis of the oal mine disaster data used in Green (1995). In thisillustration, we ondition on the number of hange points k lying in the setf1; 2; 3; 4; 5; 6g (whih overs most of the posterior probability). All the priorsettings, et., are as in Green (1995). There are 2k + 1 parameters in modelk. For this problem, 1 million sweeps takes about 28 seonds on a 800MHzPC. The posterior for the number of hange points was estimated to be (0.058,0.251, 0.294, 0.236, 0.117, 0.044) for the values k = 1 to 6. Note that thisdi�ers somewhat from the results reported in Green (1995); in fat if the samplerderived there is run for 200 000 sweeps instead of 40 000, the results beomevery similar. On this problem, the automati sampler mixes muh less well: theaeptane rate for model-jumping is 5.9%, while the integrated autoorrelationtime estimate rises to 118. This deline in performane is presumably due to theextreme multi-modal harater of many of the parameter posteriors.For omparison, the sampler desribed in Green (1995) takes 14 seondsfor 1 000 000 sweeps on this omputer, with an aeptane rate of 21% andestimated autoorrelation time of 67.8. On this basis, the relative eÆieny ofthe automati sampler is only (14� 67:8)=(28� 118) � 29%, but of ourse theimplementation time was far less.6.2 Limitations of this approahI have stressed that this automati sampler annot be expeted to have verybroad appliability. However, its suessful use on the seond example above



16 Trans-dimensional Markov hain Monte Carloshows that it an be surprisingly tolerant to multimodality in the model-spei�targets. (As seen in Figs. 3 and 4 of Green (1995), multimodality is evident evenfor k = 2, and it rapidly beomes very severe for larger k.) In suh ases, it isneessary for the proposal spread fators provided to be suÆiently large thatthere is adequate jumping between modes, in the pilot runs within eah model.This approah is unlikely to be useful for more than a small set of models,so that, for example, variable seletion between many variables is probably outof reah. It may, however, be worth exploring whether quite rude approxima-tions to the means and varianes of eah target give adequate performane, andwhether suh approximations an be generated for variable seletion problemswithout onduting pilot runs on all models.7 Methodologial extensions7.1 Delayed rejetionAn interesting modi�ation to Metropolis{Hastings is the splitting rejetion ideaof Tierney and Mira (1999), whih has reently been extended to the reversiblejump setting by Green and Mira (2001), who all it delayed rejetion.The idea is simple: if a proposal is rejeted, instead of `giving up', stayingin the urrent state, and advaning time to the next transition, we an insteadattempt a seond proposal, usually from a di�erent distribution, and possiblydependent on the value of the rejeted proposal. It is possible to set the a-eptane probability for this seond-stage proposal so that detailed balane isobtained, individually within eah stage. The idea an be extended to furtherstages.By the results of Peskun (1973), generalised in Tierney (1998), suh a strategyis always advantageous in terms of reduing asymptoti varianes of ergodiaverages, on a sweep-by-sweep basis, sine the probability of moving inreases bystage. Whether it is atually worth doing will depend on whether the redutionin Monte Carlo variane ompensates for the additional omputing time for theextra stages; the experiments reported in Green and Mira (2001) suggest thatthis an be the ase.The seond-stage aeptane probability is alulated by an argument alongthe same lines as that in Setion 2 above. We use two vetors of random numbersu1 and u2, drawn from densities g1 and g2 respetively, and two deterministifuntions mapping these and the urrent state into the proposed new states,y = h1(x; u1) and z = h2(x; u1; u2), respetively. Both u1 and u2 appear inthe expression for z to allow this seond-stage proposal to be dependent on therejeted �rst-stage andidate y; for example, z may be a move in a di�erent`diretion' in some sense.The �rst-stage proposal is aepted with probability �1(x; y) alulated asusual: �1(x; y) = min�1; �(y)g01(u01)�(x)g1(u1) �����(y; u01)�(x; u1) ����� ;



Trans-dimensional Markov hain Monte Carlo 17where u01 is suh that x = h01(y; u01).Consider the ase where the move to y is rejeted. We need to �nd an aep-tane probability �2(x; z) giving detailed balane for the seond-stage proposalz. As in the single-stage ase, we set up a di�eomorphism between (x; u1; u2)and (z;fu1;fu2), wherefu1 andfu2) would be the random numbers used in the �rst-and seond-stage attempts from z. Then x = h02(z;fu1;fu2) and the �rst-stagemove, if aepted, would have taken us to y? = h01(z;fu1).Completing the argument as in Setion 2.2, equating integrands after makingthe hange of variable, we �nd that a valid hoie for the required aeptaneprobability is�2(x; z) = min�1; �(z)�(x) eg1(fu1) eg2(fu2)g1(u1)g2(u2) [1� �1(z; y?)℄[1� �1(x; y)℄ �����(z;fu1;fu2)�(x; u1; u2) ����� : (7.1)In a model-jumping problem, we would ommonly take y and z to lie in thesame model, and y? to be in the same model as x, although as disussed by Greenand Mira, other hoies are possible. For example, where models are ordered byomplexity, z might lie between x and y, so that the seond-stage proposal isless `bold'.7.2 EÆient proposal hoie for reversible jump MCMCThe most substantial reent methodologial ontribution to reversible jumpMCMC generally is work by Brooks et al. (2000) on the eÆient onstrution ofproposal distributions.This is foussed mainly on the quantitative question of seleting the proposaldensity (g(u) in Setion 2.2) well, having already �xed the transformation (x0 =h(x; u)) into the new spae. The qualitative hoie of suh a transformation h isperhaps more elusive and hallenging.Brooks, Giudii and Roberts propose several new methods, falling into twomain lasses. The �rst is onerned with analysis of the aeptane rate (2.3)as a funtion of u for small u (on an appropriate sale of measurement). Theseond lass of methods work in a produt-spae formulation somewhat like thatin Setion 3, inluding some novel formulations with autoregressively onstrutedauxiliary variables.Their methods are implemented and ompared on examples inluding hoieof autoregressive models, graphial gaussian models, and mixture models.7.3 Diagnostis for reversible jump MCMCMonitoring of MCMC onvergene on the basis of empirial statistis of thesample path is important, while not of ourse a substitute for a good theoretialunderstanding of the hain. There has been some onern that aross-modelhains are intrinsially more diÆult to monitor, perhaps implying their useshould be avoided.In truth, the degree of on�dene that onvergene has been ahieved pro-vided by `passing' a diagnosti onvergene test delines very rapidly as the
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Proposal densities, and produt spae methodsSimon J. GodsillUniversity of Cambridge, UK1 IntrodutionIn this artile, Peter Green has provided the most informative and ompletesurvey urrently available of the issues surrounding Bayesian model unertaintyusing MCMC methods. Naturally he has foussed on the reversible jump meth-ods whih have dominated the �eld over reent years, although he has pointedout the lose relationships with the produt spae formulations of Besag (1997),Carlin and Chib (1995), Godsill (2001) and Dellaportas et al. (2002).Pratitioners have readily adopted reversible jump methods for use in om-plex Bayesian problems, and yet even after several years in the literature themethods have a reputation for being somehow `diÆult' to understand and stillmore diÆult to implement suessfully. Green's artile helps further to demys-tify the reversible jump methodology by providing some useful new disussionmaterial and a very transparent derivation of the basi results. The artile alsodisusses reent developments in proposal design and introdues a novel proposalmehanism for general models.So, is there any methodologial work still to be done in the �eld? Green'sartile is very lear on this issue: the basi frameworks, whether pure reversiblejump or ombined with produt spae ideas, are well established; however, thespei�s of a generi implementation are not, and it is lear that it is theseareas that an most bene�t from renewed researh e�ort. In fat, given thegeneral interest from a wide variety of disiplines in this topi, there have beensurprisingly few methodologial developments in the area up to now. In thefollowing setions, I will fous on just two developing topis: automati proposalgeneration and produt spae methods.2 Constrution of proposal densitiesKey to the e�etive operation of reversible jump methods is the hoie of pro-posal distributions. Most appliations to date have onstruted proposals on anad ho basis, attempting to plae proposed parameters in regions of high proba-bility mass in the new model's parameter spae. This an be suessful in someases, but it is tempting to seek an automati proedure that does not requirethe tuning and pilot runs often required in these ad ho settings. There havebeen some reent advanes in this diretion, as disussed in Green's artile. Iwill attempt to interpret Green's new proposal mehanism in the light of morestandard Gaussian approximation methods for reversible jump.



22 Proposal densities, and produt spae methodsIn Godsill (2001) it was suggested that an optimal hoie of proposal wouldbe the full onditional posterior probability for the parameters in the new model,i.e. set q(�k0 ) = p(�k0 jk0; y), in whih ase the aeptane ratio simpli�es top(k0jy)q(kjk0)p(kjy)q(k0jk)where q(k0jk) is the probability that model k0 is proposed from model k. Wenote that this highly idealised setting leads to an aeptane probability whihis onstant for all values of �k0 . This is in agreement with the objetives of the`higher order methods' proposed in Brooks et al. (2000), in whih proposals arespei�ally designed so that one or more derivatives of the aeptane ratio areset to zero loally at a hosen representative `entering' point. Brooks et al.(2000) lend some theoretial weight to the suggestion that p(�k0 jk0; y) is a goodproposal density by proving that the apaitane of the Markov hain is optimisedby this hoie of proposal in a simple two-model setting, and I would onjeturethat the result is also valid in muh more general model seletion settings. Thissuggestion leads to the muh-used idea that the proposal distribution, while inpratie never equal to p(�k0 jk0; y), should be designed to approximate the fullonditional if possible. A natural starting point here is a Gaussian proposalmathing the 1st and 2nd order moments of the target onditional distribution.Using the same notation as Green's artile, we propose a nk0 -dimensional vetorv from the standard normal density, and generate the proposed parameter as�k0 = �k0 +Bk0v, giving aeptane ratioA = p(k0; �k0 jy)q(kjk0)q(v0)jB0kjp(k; �kjy)q(k0jk)q(v)jBk j : (2.1)In the ase that the target parameter onditional is indeed Gaussian with mo-ments �k0 and Bk0BTk0 this simpli�es toA = p(k0jy)q(kjk0)p(kjy)q(kjk0) ;and we have perfetly adapted Metropolis{Hastings on the marginal model indexspae. Thus, in the ase of a Gaussian target with orretly spei�ed Gaussianproposals, the aeptane probabilities of this and Green's proposed method areidential and hene the two samplers explore the model indexing spae equallyrapidly. The interesting possibilities with Green's proposal arise when the targetsare non-Gaussian, sine the aeptane ratio of Green's method then appears toeliminate some of the variability in the aeptane ratio by replaing q(v0)=q(v)in (2.1) with a single term q(u), whih is the density of a generally muh lowerdimensional Gaussian than either q(v) or q(v0). The question then arises as tohow the target ratios p(k0; �k0 jy)=p(k; �kjy) ompare between the two approahes,and it is lear that when the target is strongly non-Gaussian, either method maywell lead to high aeptane probabilities. However, this is qualitative thinking



Proposal densities, and produt spae methods 23and it would be very interesting to disover how these two related approahesfared relative to one another in the examples of Setion 6.1 of Peter Green'sartile. Clearly the approximation of eah andidate model, even with a Gaus-sian, will require a great deal of work for large model spaes. However, one anenvisage hybrid approahes in whih a substantial proportion of the parametersremain �xed in model jumping proposals, as in many standard reversible jumpimplementations to date, while a Gaussian approximation is applied to a moremanageable subset of parameters onditional on those �xed parameters.3 Produt spae methodsProdut spae methods provide another interesting viewpoint on model uner-tainty, sine they allow simulation to be performed, at least oneptually, ona �xed dimension spae. Various authors have shown that reversible jump al-gorithms an be obtained as speial ases of produt spae methods (and vieversa); see Besag (1997), Godsill (2001) and Dellaportas et al. (2002).Very general lasses of model spae sampling an be written in the ompositemodel spae framework of Godsill (2001), whih is a produt spae represen-tation, allowing for any overlap between parameters of di�erent models that isomputationally onvenient (for example, nested models and variable seletionmodels are easily enoded within the framework). Consider a `pool' of N param-eters � = (�1; : : : ; �N ). A andidate model k an be desribed in terms of thispool of parameters by means of an indexing set I(k) = fi1(k); i2(k); : : : ; il(k)(k)gwhih ontains l(k) distint integer values between 1 and N . The parameters�I(k) of model k are then de�ned as �I(k) = (�i; i 2 I(k)). In the simplest asewe have I(k) = k, whih leads to a straightforward model seletion senario withno overlap between model parameters. In other ases, suh as variable seletionor nested models, it may be onvenient to `share' parameters between more thanone model. The posterior distribution for the omposite model spae an nowbe expressed asp(k; �jy) = p(yjk; �I(k)) p(�I(k)jk) p(��I(k)j�I(k); k) p(k)p(y) ; (3.1)where ��I(k) = (�i; i 2 f1; : : : ; Ng � I(k)) denotes the parameters not used bymodel k. All of the terms in this expression are de�ned expliitly by the hosenlikelihood and prior strutures exept for p(��I(k)j�I(k); k), the `prior' for theparameters in the omposite model whih are not used by model k. It is easilyseen that any proper distribution an be assigned arbitrarily to these parameterswithout a�eting the required marginals for the remaining parameters. This�xed dimensionality distribution an now be used as the target for an MCMCalgorithm. One of the possible bene�ts of suh a sheme, as suggested in Godsill(2001), is that parameters from models other than the urrent model an inpriniple be stored and used for onstrution of e�etive proposals when thoseother models are proposed again. There are, however, some basi pitfalls whihan beset this type of approah. The �rst is storage: one wouldn't wish to



24 Proposal densities, and produt spae methodsstore all parameters of all models in memory if the pool of parameters � islarge. The seond is tratability. Consider the pure model seletion senarioin whih there is no overlap between parameters, i.e. I(k) = k. Now, it mightseem sensible to set the target density for some or all of the unused parametersequal to the data onditional posterior, in whih ase they an be updated ateah iteration aording to any suitable MCMC sheme and they will alwaysbe generating useful values for future model jumping proposals. This an beahieved by hoosing the arbitrary prior distribution for these parameters asfollows: p(��kj�k; k) = Yj 6=k p(�j jj; y):However, it is easily veri�ed that model jumping proposals under suh a shemerequire the marginal model probabilities in the aeptane ratio, and hene themethod is self-destroying as it requires us to know exatly one of the quantitieswe wish to estimate! Clearly the arbitrary prior probability should not be hosenin this intuitively reasonable way.Another approah whih might have similar bene�ts would be to assign somereasonable distributions for the arbitrary priors, suh as a tratable approxima-tion to the data onditional posterior distribution for those parameters, but toapply a very slowly mixing Markov hain when updating these parameters. Thiswould allow the parameters of eah model to retain some memory of their earlieron�guration when that model was last seleted by the MCMC. A promisingapproah related to this onept has been devised by Brooks et al. (2000). Init they assume a nested struture to the models, and augment the parameterspae with suÆient auxiliary variables to make the total parameter spae equalin dimensionality to the most omplex andidate model. These auxiliary vari-ables are then slowly updated at eah iteration aording to an autoregressiveMarkov hain with a standard Gaussian stationary distribution. The auxiliaryvariables are then used diretly to generate deterministi model jumping propos-als to higher order models. The extra memory and persistene introdued intothe hain in this way is shown to indue a better exploration of the tails of themodel order distribution for a graphial models example.More general shemes with this avour an easily be devised based on thegeneral produt spae framework. It may be reasonable, for example, to useone or more of the auxiliary parameters to help onstrut a random proposalrather than a deterministi one. Another extension would address the memorystorage problems: rather than update all of the auxiliary parameters using aslowly mixing Markov hain, update only those parameters within some suitablyhosen `neighbourhood' of the urrently seleted model. The remaining auxiliaryparameters are sampled independently diretly from their target distribution,whih would be arefully hosen for tratability, and hene do not need to besampled until their orresponding model number is proposed.It seems reasonable that ideas of this sort an lead to improved performaneof reversible jump algorithms. There will usually however be an inreased burden



Trans-dimensional Bayesian nonparametris with spatial point proesses 25of omputational load and memory storage requirements, so it must remain to beseen whether performane improvements are suÆient to merit the extra work.Trans-dimensional Bayesian nonparametris with spatialpoint proessesJuha HeikkinenFinnish Forest Researh Institute, Helsinki, Finland1 IntrodutionPoint proesses are a lass of models where the notion of variable dimension isinherent. The main part of this disussion is onerned with the appliationof marked point proesses as prior models in nonparametri Bayesian funtionestimation, reformulating and revising earlier joint work with Elja Arjas and list-ing some other related work (Setion 2). Aordingly, the disussion is enteredon trans-dimensional modelling rather than on the simulation tehniques them-selves, and onnets to some of the material in the hapters by Sylvia Rihardsonand Hurn, Husby and Rue. I shall end, however, with an example illustrating therole of the dimension-mathing requirement (Setion 3). The point made thereis rather marginal to Green's main message, but hopefully interesting and/orinstrutive to modellers working with onstraints.2 Nonparametri Bayesian funtion estimationHeikkinen and Arjas (1998) introdued a (trans-dimensional) nonparametriBayesian approah to the estimation of the intensity funtion of a spatial Poissonproess. The approah is similar to that in the hange point and image analysisexamples of Green (1995), and an be diretly generalised to a wide variety offuntion estimation problems (Heikkinen 1998). It has been applied to a prob-lem involving simultaneous interpolation, regression, and intensity estimation(Heikkinen and Arjas 1999), and losely related methods have been developedfor image analysis (Niholls 1998; M�ller and Skare 2001), multivariate regres-sion and lassi�ation (Denison et al. 2002b), and disease mapping (Knorr-Heldand Ra�er 2000; Denison and Holmes 2001). The following paragraphs showhow I would now prefer to introdue the method.Consider the estimation of real valued surfaes f : S ! R de�ned on abounded support S � R2. A trans-dimensional approximation of f is obtainedthrough its parametrisation by marked point pattern � = f(x1; y1); : : : ; (xk; yk)g,in whih the loations are a simple point pattern x = fx1; : : : ; xkg on S with avariable number k of randomly loated points, and the marks represent valuesyi = f�(xi) of the approximating funtion. To omplete the approximation, weapply some rough and simple inter/extrapolation rule to determine f�(s), s 2



26 Trans-dimensional Bayesian nonparametris with spatial point proessesS nx. By pointwise averaging over a large number of suh rough approximations,varying the number and loations of the points in x, we an then obtain asmooth estimate of f . With unbounded k the parameter spae is e�etivelyin�nite-dimensional and hene the inferene honestly nonparametri, yet theomputations an be handled by trans-dimensional MCMC.The inter/extrapolations of Heikkinen and Arjas (1998) were step funtionson the Voronoi tessellations of S generated by the loation patterns x (see Hurnet al. this volume, Setion 2.2; S. Rihardson, this volume, Setion 3.1). However,Voronoi tessellations ould be replaed by the Delaunay or other more generaltriangulations (f. Niholls 1998). In addition to the more exible geometry, tri-angular partitions o�er the opportunity of making the funtion approximationspieewise linear instead of pieewise onstant (see below). In the estimation ofsmooth funtions, I would prefer the omputationally simpler Delaunay trian-gulations, the greater exibility of other triangulations being more valuable inproblems like segmentation (Niholls 1998).Our prior of x was the homogeneous Poisson proess, and large di�erenesbetween nearby funtion values were penalised by a Markov random �eld priorfor yjx. This led to unneessary ompliations with the normalising onstants,whih ould have been avoided by modelling the marked point pattern � diretlyas a nearest-neighbourMarkov point proess with orrelated marks, as did M�llerand Skare (2001). Then the marginal prior of x is no longer a Poisson proess,but that seems like a small prie to pay for an otherwise more tratable model.Although Denison and Holmes (2001) deem this smoothing unneessary in the�rst plae, I think that it should lead to qualitatively more reasonable individualapproximations of f , and thereby to more realisti inferenes on its shape, forexample. For extrapolations beyond the onvex hull of the data, dependenepriors seem essential.Motivated by suh onsiderations, let me then sketh an approah I wouldurrently suggest. Assuming S to be a polygon, let � be a marked point proessinluding loations on the edges and verties of S as in the model of Niholls(1998). De�ne the prior density of � with respet to the distribution of theappropriate marked Poisson proess by something likep(�) / �k exp��� Xxi�xxj(yi � yj)2�;where xi �x xj , if the tiles S(x;xi) 3 xi and S(x;xj) 3 xj of the Voronoitessellation generated by x are adjaent. Finally, de�ne f� as that unique surfaewhih passes through all points (xi; yi) of � and is linear within eah triangle inthe Delaunay tessellation generated by x. If f an only take a �nite (and small)number of distint values, as in image lassi�ation, for example, I would followM�ller and Skare (2001) in using the Voronoi step funtions and an extension



Trans-dimensional Bayesian nonparametris with spatial point proesses 27like p(�) / �k exp��� Xxi�xxj 1(yi 6= yj)�of the Potts model, where 1 denotes the indiator funtion.Theoretially, this approah works regardless of the dimension of S. How-ever, the e�ort needed both for the implementation and for the omputationsinrease rapidly with the dimension; for an example, see the 3-d problem in reser-voir modelling takled by M�ller and Skare (2001). Independene priors allowfor a omputationally feasible approah for moderate dimensional S (Denisonet al. 2002b), but Denison et al. (2002a) have found that they do not work wellin very high dimensions, either.3 On onstraints and dimension mathingIn most appliations of trans-dimensional MCMC, the major problem seemsto be �nding eÆient proposal distributions. When there are onstraints inthe parameter spae, however, even the hoie of valid proposals may not betrivial. A typial ase in the funtion estimation ontext are problems involvinginterpolation (Heikkinen and Arjas 1999), of whih a toy example is given below.Consider the funtion estimation problem of Setion 2 with the onstraintf(s0) = f0 for some s0 2 S, and step funtion approximations f� taking onstantvalue yi on eah Voronoi tile:f�(s) = kXi=1 yi1fs 2 S(x;xi)g:Suppose we wish to implement the simplest possible sampler with two kinds ofmove proposal: death of one random point in the urrent � and birth of a newpoint (�; �) with a uniform random loation � 2 S and mark � sampled fromsome distribution on R. In Green's formalism, we would then have r = 2k,r0 = 2k + 2, u = (�; �), and d0 = 0 for the birth move from � with k points to�0 = �[fug. But if s0 2 S(x[f�g; �), then the only proposal yielding a positiveaeptane probability would be the (one-dimensional) �0 = � [ (�; f0). Thiswould leave the mark � of u unused and hene violate the dimension-mathingrequirement.The onrete onsequenes of the failure in dimension-mathing are revealedonly when trying to work out the aeptane probability for the death of (xi; yi)with s0 2 S(x;xi). For positive hanes of aeptane, we are fored to proposefuntion value f0 on that tile S(x n xi;xj) whih ontains s0 in the proposedtessellation. In other words, the death proposal is�0 = � n f(xi; yi); (xj ; yj)g [ (xj ; y0j);where y0j = f0. But if yj 6= f0, then our simple sampler annot reverse this move,beause it proposes y00j = y0j = f0 in the birth move from �0.



28 Trans-dimensional Bayesian nonparametris with spatial point proessesReturning to the birth move x0 = x[ � with s0 2 S(x0; �), the onsiderationsabove lead to the onlusion that the dimension we annot use in proposing thefuntion value on tile S(x0; �), that is, the random mark � of u, must be used toperturb the urrent funtion value yj(= f0) on the tile S(x;xj) ontaining s0.See Heikkinen and Arjas (1999) for the details of one suh sampler.One might ask, why not just keep a �xed generating point (s0; f0) and avoidthe whole diÆulty, but this would result in di�erent smoothing around s0 thanelsewhere.Additional referenes in disussionDenison, D. G. T. and Holmes, C. C. (2001). Bayesian partitioning for estimatingdisease risk. Biometris, 57, 143{9.Denison, D. G. T., Adams, N. M., Holmes, C. C., and Hand, D. J. (2002a).Bayesian partition modelling. Computational Statistis and Data Analysis,38, 475{85.Denison, D. G. T., Holmes, C. C., Mallik, B. K., and Smith, A. F. M. (2002b).Bayesian methods for nonlinear lassi�ation and regression, Chapter 7.Wiley, Chihester.Heikkinen, J. (1998). Curve and surfae estimation using dynami step funtions.In Pratial nonparametri and semiparametri Bayesian statistis, (ed.D. Dey, P. M�uller, and D. Sinha), pp.255{72. Springer-Verlag, New York.Heikkinen, J. and Arjas, E. (1998). Non-parametri Bayesian estimation of aspatial Poisson intensity. Sandinavian Journal of Statistis, 25, 435{50.Heikkinen, J. and Arjas, E. (1999). Modeling a Poisson forest in variable eleva-tions: a nonparametri Bayesian approah. Biometris, 55, 738{45.Holmes, C. C., Denison, D. G. T., and Mallik, B. K. (1999). Bayesian parti-tioning for lassi�ation and regression. Tehnial report, Department ofMathematis, Imperial College, London.Knorr-Held, L. and Ra�er, G. (2000). Bayesian detetion of lusters and dison-tinuities in disease maps. Biometris, 56, 13{21.M�ller, J. and Skare, �. (2001). Coloured Voronoi tessellations for Bayesianimage analysis and reservoir modelling. Statistial Modelling, 1, 213{32.Niholls, G. (1998). Bayesian image analysis with Markov hain Monte Carlo andolored ontinuum triangulation models. Journal of the Royal StatistialSoiety, B, 60, 643{59.


