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1 Introduction

Readers of this book will need no further convincing of the importance of Markov
chain Monte Carlo (MCMC) in numerical calculations for highly structured
stochastic systems, and in particular for posterior inference in Bayesian sta-
tistical models. Another chapter (Roberts, this volume) is devoted to discussion
of some of the currently important research directions in MCMC generally. This
chapter is more narrowly focussed on MCMC methods for what can be called
‘trans-dimensional’ problems, to borrow a nicely apt phrase from Roeder and
Wasserman (1997): those where the dynamic variable of the simulation, the
‘unknowns’ in the Bayesian set-up, does not have fixed dimension.

Statistical problems where ‘the number of things you don’t know is one of
the things you don’t know’ are ubiquitous in statistical modelling, both in tradi-
tional modelling situations such as variable selection in regression, and in more
novel methodologies such as object recognition, signal processing, and Bayesian
nonparametrics. All such problems can be formulated generically as a matter
of joint inference about a model indicator k& and a parameter vector 6, where
the model indicator determines the dimension ny of the parameter, but this di-
mension varies from model to model. Almost invariably in a frequentist setting,
inference about these two kinds of unknown is based on different logical prin-
ciples, but, at least formally, the Bayes paradigm offers the opportunity of a
single logical framework — it is the joint posterior p(k, 8x|Y") of model indicator
and parameter given data Y that is the basis for inference. How can this be
computed?

We set the joint inference problem naturally in the form of a simple Bayesian
hierarchical model. We suppose given a prior p(k) over models k in a countable
set K, and for each k, a prior distribution p(fi|k) and a likelihood p(Y'|k,6)
for the data Y. For definiteness and simplicity of exposition, we suppose that
p(0k|k) is a density with respect to ng-dimensional Lebesgue measure, and that
there are no other parameters, so that where there are parameters common to
all models these are subsumed into each 6, € R™. Additional parameters,
perhaps in additional layers of a hierarchy, are easily dealt with. Note that in
this chapter, all probability distributions are proper.
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The joint posterior

B p(K)p(BilK)p(Y [k 6)
Pk OuY) = S @, (3 Tk, )0,

can always be factorised as
p(k,0kY) = p(k[Y)p(Or|k,Y),

that is as the product of posterior model probabilities and model-specific param-
eter posteriors. This identity is very often the basis for reporting the inference,
and in some of the methods mentioned below is also the basis for computation.

It is important to appreciate the generality of this basic formulation. In
particular, note that it embraces not only genuine model-choice situations, where
the variable k indexes the collection of discrete models under consideration,
but also settings where there is really a single model, but one with a variable
dimension parameter, for example a functional representation such as a series
whose number of terms is not fixed. In the latter case, arising sometimes in
Bayesian nonparametrics, for example, k is unlikely to be of direct inferential
interest.

It can be argued that responsible adoption of a Bayesian hierarchical model
of the kind introduced above presupposes that, for example, parameter priors
p(6i|k) should be compatible in the sense that inference about functions of pa-
rameters that are meaningful in several models should be approximately invari-
ant to k. Such compatibility could in principle be exploited in the construction
of MCMC methods, although I am not aware of general methods for doing so.
However, it is philosophically tenable that no such compatibility is present, and
we shall not assume it.

Trans-dimensional MCMC has many applications other than to Bayesian
statistics. Much of what follows will apply equally to them all; however, for
simplicity, I shall use the Bayesian motivation and terminology throughout.

In Section 2, reversible jump MCMC is discussed, and this is related to other
model-jumping approaches in Section 3. The following section treats alternatives
to model-jumping, and Section 5 discusses and analyses some of the issues in-
volved in choosing between the within- and across-model approaches. In Section
6, a simple fully-automated reversible jump sampler is introduced, and finally
Section 7 notes some recent methodological extensions.

2 Reversible jump MCMC

In the direct approach to computation of the joint posterior p(k,0;|Y) via
MCMC we construct a single Markov chain simulation, with states of the form
(k,60r); we might call this an across-model simulation. We address other ap-
proaches in later sections.

The state space for such an across-model simulation is [J, o ({k} x R™);
mathematically, this is not a particularly awkward object, and our construction
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involves no especially challenging novelties. However, such a state space is at
least a little non-standard! Formally, our task is to construct a Markov chain
on a general state space with a specified limiting distribution, and as usual in
Bayesian MCMC for complex models, we use the Metropolis—Hastings paradigm
to build a suitable reversible chain. As we see in the next subsection, on the face
of it, this requires measure-theoretic notation, which may be unwelcome to some
readers. The point of the ‘reversible jump’ framework is to render the measure
theory invisible, by means of a construction using only ordinary densities. In
fact, in the formulation given below, different and I hope improved from that of
Green (1995), even the fact that we are jumping dimensions becomes essentially
invisible!

2.1 Metropolis—Hastings on a general state space

We wish to construct a Markov chain on a state space A’ with invariant distri-
bution 7. As usual in MCMC we will consider only reversible chains, so the
transition kernel P satisfies the detailed balance condition

/ 7(da) P(z,dz") =/ m(dz')P(2', dx) (2.1)
(z,2')€EAXB

(z,2")€EAXB
for all Borel sets A, B C X. In Metropolis—Hastings, we make a transition by
first drawing a candidate new state ' from the proposal measure ¢(z, dz’') and
then accepting it with probability a(z,z’), to be derived below. If we reject, we
stay in the current state, so that P(z,dz') has an atom at z. This contributes

the same quantity [, p P(z,{z})r(dz) to each side of (2.1); subtracting this
leaves

/ 7(dz)q(z, dz")a(z, 2') = / #(dz')g(z’, dz)a(z’, x). (2.2)
(z,2")€EAXB

(z,2')€EAXB

It can be shown (Green 1995; Tierney 1998) that 7(dz)q(x, d=') is dominated by
a symmetric measure p on X x X; let its density (Radon—Nikodym derivative)
with respect to this u be f. Then (2.2) becomes

/ alz,z') f(z, 2" )pu(dz,dz’) = / a2’ z)f(2', 2)p(dz’, dz)
(z,2')EAXB

(z,2')EAXB

and, using the symmetry of u, this is clearly satisfied for all Borel A, B if

a(z,z') = min {1, ;Ef;; } .

This might be written more informally in the apparently familiar form

N f (el de)
a(z,z') = {1, T (d2)q(z.da) } . (2.3)
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2.2 A constructive representation in terms of random numbers

Fortunately, the apparent abstraction in this prescription can be circumvented
in most cases. By considering how the transition will be implemented in a
computer program, the dominating measure and Radon—Nikodym derivatives
can be generated implicitly. Take the case where X C R?, and suppose 7 has
a density (also denoted 7) with respect to d-dimensional Lebesgue measure. At
the current state x, we generate, say, 7 random numbers u from a known joint
density g, and then form the proposed new state as some suitable deterministic
function of the current state and the random numbers: z’' = h(z,u), say. The
left-hand side of (2.2) can then be written as an integral with respect to (z,u):

/ 7(z)g(u)a(z,2") dz du.
(z,2")EAXB

The reverse transition from z' to z would be made with the aid of random
numbers u' ~ ¢’ giving z = h'(2',u'). If the transformation from (z, u) to (z',u')
is a diffeomorphism (the transformation and its inverse are differentiable), then
we can first write the right-hand side of (2.2) as an integral with respect to
(z',u'), and then apply the standard change-of-variable formula. We then see
that the (d + r)-dimensional integral equality (2.2) holds if

o(z',u')

r(@)g(walr,a') = w(a')g (W)ala',2)| Fro

)

where the last factor is the Jacobian of the diffeomorphism from (z,u) to (z',u').
! ! ! ! !
m(z)g(u) | O(z,u)

Thus, a valid choice for « is
} , (2.4)
involving only ordinary joint densities.

While this reversible jump formalism perhaps is a little indirect, it proves a
flexible framework for constructing quite complex moves using only elementary
calculus. In particular, the possibility that r < d covers the case, typical in
practice, that given z € X', only a lower-dimensional subset of X" is reachable
in one step. (The Gibbs sampler is the best-known example of this, since in
that case only some of the components of the state vector are changed at a
time, although the formulation here is more general as it allows the subset not
to be parallel to the coordinate axes.) Separating the generation of the random
innovation u and the calculation of the proposal value through the deterministic
function x' = h(z,u) is deliberate; it allows the proposal distribution ¢(z, B) =

fz’GB h(z,u)g(u)du to be expressed in many different ways, for the convenience
of the user.

2.3 The trans-dimensional case

However, the main benefit of this formalism is that expression (2.4) applies,
without change, in a variable dimension context, if we use the same symbol 7 ()
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for the target density whatever the dimension of z in different parts of X'. Pro-
vided that the transformation from (x,u) to (z',u’) remains a diffeomorphism,
the individual dimensions of x and z' can be different. The dimension-jumping
is indeed ‘invisible’.

In this setting, suppose the dimensions of z,z',u and u' are d,d',r and 7’
respectively, then we have functions h : RExR" — R and b’ : R xR — R4,
used respectively in ' = h(z,u) and x = h/(z',u'). For the transformation from
(z,u) to (2',u') to be a diffeomorphism requires that d + r = d' + r', so-called
‘dimension-matching’; if this equality failed, the mapping and its inverse could
not both be differentiable.

2.4 Details of application to the model-choice problem

Returning to our generic model-choice problem, we wish to use these reversible
jump moves to sample the space X' = |, ({k} x R™) with invariant distribu-
tion 7, which here is p(k, 0;|Y").

Just as in ordinary MCMC, we typically need multiple types of moves to
traverse the whole space A'. Each move is a transition kernel reversible with
respect to 7, but only in combination do we obtain an ergodic chain. The moves
will be indexed by m in a countable set M, and a particular move m proposes
to take ¢ = (k,6;) to «' = (k',0},) or vice versa for a specific pair (k,k'); we
denote {k, k'} by K,,. The detailed balance equation (2.2) is replaced by

/ 7(dz) gm (2, dz" ) am (x, 2") =/ 7(dz")gm (2, dx) o (2, )
(z,2")€EAXB

(z,2")€EAXB

for each m, where now g,,(z,dz') is the joint distribution of move type m and
destination z'. The complete transition kernel is obtained by summing over m,
so that for z ¢ B, P(x,B) =Y, [ tm(z.dz")ay (2, 2'), and it is easy to see
that (2.1) is then satisfied.

The analysis leading to (2.3) and (2.4) is modified correspondingly, and yields

(@) jm (2') gin (W) ‘6(33’:”’) } _

T(x) jm(®) gm(u) | O(z,u)
Here j,(z) is the probability of choosing move type m when at z, the variables
x,2' u,u’ are of dimensions dy,,d.,, rm, rl, respectively, with d,,, + r,, = d},, +
rr,, we have &' = hy,(z,u) and z = h],(2',u'), and the Jacobian has a form
correspondingly depending on m.
Of course, when at z = (k,0), only a limited number of moves m will typi-
cally be available, namely those for which & € K,,. With probability

1L =3 kek, Jm(x) no move is attempted.

am(z,z') = min {1,

2.5 Some remarks and ramifications

In understanding the reversible jump framework, it may be helpful to stress the
key role played by the joint state-proposal equilibrium distributions. The fact
that the degrees of freedom in these joint distributions are unchanged when x and
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z' are interchanged allows the possibility of reversible jumps across dimensions,
and these distributions directly determine the move acceptance probabilities.

Note that the framework gives insights into Metropolis—Hastings that apply
quite generally. State-dependent mixing over a family of transition kernels in
general infringes detailed balance, but is permissible if, as here, the move prob-
abilities j,(z) enter properly into the acceptance probability calculation. Note
also the contrast between this randomised proposal mechanism, and the related
idea of mixture proposals, where the acceptance probability does not depend
on the move actually chosen; see the discussion in Besag et al. (1995, appendix
1). Contrary to some accounts that connect it with the jump in dimension, the
Jacobian comes into the acceptance probability simply through the fact that the
proposal destination ' = h(z,u) is specified indirectly.

Finally, note that in a large class of problems involving nested models, the
only dimension change necessary is the addition or deletion of a component
of the parameter vector (think of polynomial regression, or autoregression of
variable order). In such cases, omission of a component is often equivalent to
setting a parameter to zero. These problems can be handled in a seemingly more
elementary way, through allowing proposal distributions with an atom at zero:
the usual Metropolis—Hastings formula for the acceptance probability holds for
densities with respect to arbitrary dominating measures, so the reversible jump
formalism is not explicitly needed. Nevertheless, it leads to exactly the same
algorithm.

Other authors have provided different pedagogical descriptions of reversible
jump. Waagepetersen and Sorensen (2001) provide a tutorial following the lines
of Green (1995) but in much more detail, and Besag (1997, 2000) gives a novel
formulation in which variable dimension notation is circumvented by embedding
all 8y within one compound vector; this has something in common with the
product-space formulations in the next subsection.

3 Relations to other across-model approaches

Several alternative formalisms for across-model simulation are more or less closely
related to reversible jump.

Jump diffusion. In addressing challenging computer vision applications, Gre-
nander and Miller (1994) proposed a sampling strategy they termed jump diffu-
sion. This comprised two kinds of move — between-model jumps, and within-
model diffusion according to a Langevin stochastic differential equation. Since
in practice, continuous-time diffusion has to be approximated by a discrete-time
simulation, they were in fact using a trans-dimensional Markov chain. Had they
corrected for the time discretisation by a Metropolis—Hastings accept/reject de-
cision (giving a so-called Metropolis-adjusted Langevin algorithm or MALA)
(Besag 1994), this would have been an example of reversible jump.

Phillips and Smith (1996) applied jump-diffusion creatively to a variety of
Bayesian statistical tasks, including mixture analysis, object recognition and
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variable selection.

Point processes, with and without marks. Point processes form a natural
example of a distribution with variable-dimension support, since the number of
points in view is random; in the basic case, a point has only a location, but more
generally may be accompanied by a mark, a random variable in a general space.

A continuous time Markov chain approach to simulating certain spatial point
processes, by regarding them as the invariant distributions of spatial birth-and-
death processes, was suggested and investigated by Preston (1977) and Rip-
ley (1977). More recently, Geyer and Mgller (1994) proposed a Metropolis—
Hastings sampler, as an alternative to using birth-and-death processes; their
construction is a special case of reversible jump.

Stephens (2000) notes that various trans-dimensional statistical problems
can be viewed as abstract marked point processes: in these models, the items of
which there are a variable number are regarded as marked points. For example
in a normal mixture model the points represent the mean—variance pairs of the
components, marked with the component weights. Stephens borrows the birth-
and-death simulation idea to develop a methodology for finite mixture analysis,
and also suggests that the approach appears to have much wider application,
citing change point analysis and regression variable selection as partially worked
examples. The key feature of these three settings that allows the approach to
work is the practicability of integrating out latent variables so that the likelihood
is fully available. See also Hurn et al. (2001) for application to mixtures of
regressions. Cappé et al. (2001) have recently given a rather complete analysis
of the relationship between reversible jump and continuous time birth-and-death
samplers.

Product-space formulations. Several relatives of reversible jump work in a
product space framework, that is, one in which the simulation keeps track of
all 8, not only the ‘current’ one. The state space is therefore K X ®pcxcR™
instead of | J, ¢, ({k} x R™). This has the advantage of circumventing the trans-
dimensional character of the problem, at the price of requiring that the target
distribution be augmented to model all 6; simultaneously. For some variants
of this approach, this is just a formal device, for others it leads to significantly
extra work.

Let 6_j; denote the composite vector consisting of all 8;,] # k catenated
together. Then the joint distribution of (k,(6; : | € K),Y) can be expressed as

p(E)p(Or|k)p(0_¢ |k, O0r)p(Y |E, O), (3.1)

since we make the natural assumption that p(Ylk, (6; : | € K)) = p(Yk,6%).
It is easily seen that the third factor p(8_g|k,6)) has no effect on the joint
posterior p(k, 6;|Y); the choice of these conditional distributions, which Carlin
and Chib (1995) call ‘pseudo-priors’, is entirely a matter of convenience, but may
influence the efficiency of the resulting sampler.
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Carlin and Chib (1995) adopted pseudo-priors that were conditionally inde-
pendent: p(6_g|k,0k) = [, p(6i]k), and assumed p(6;|k) does not depend on
k for k # 1. They used a Gibbs sampler, updating k& and all §; in turn. This
evidently involves sampling from the pseudo-priors, and they therefore propose
to design these pseudo-priors to ensure reasonable efficiency, which requires their
approximate matching to the posteriors: p(6;|k) ~ p(6;]1,Y).

Green and O’Hagan (1998) pointed out both that Metropolis-Hastings moves
could be made in this setting, and that in any case there was no need to update
{6;,1 # k} to obtain an irreducible sampler. In this form the pseudo-priors are
only used in computing the update of k. Dellaportas et al. (2002) proposed and
investigated a ‘Metropolised Carlin and Chib’ approach, in which joint model
indicator /parameter updates were made, and in which it is only necessary to
resample the parameter vectors for the current and proposed models.

Godsill (2001) introduces a general ‘composite model space’ framework that
embraces all of these methods, including reversible jump, facilitating comparisons
between them. He devised the formulation (3.1), or rather, a more general version
in which the parameter vectors 6 are allowed to overlap arbitrarily, each 6
being identified with a particular sub-vector of one compound parameter. This
framework helps to reveal that a product-space sampler may or may not entail
possibly cumbersome additional simulation, updating parameters that are not
part of the ‘current’ model. It also gives useful insight into some of the important
factors governing the performance of reversible jump, and Godsill offers some
suggestions on proposal design.

Godsill’s formulation deserves further attention, as it provides a useful lan-
guage for comparing approaches, and in particular examining one of the cen-
tral unanswered questions in trans-dimensional MCMC. Suppose the simulation
leaves model k and later returns to it. With reversible jump, the values of 6y
are lost as soon as we leave k, while with some versions of the product-space
approach, the values are retained until k is next visited. Intuitively either strat-
egy has advantages and disadvantages for sampler performance, so which is to
be preferred?

4 Alternatives to joint model-parameter sampling

The direct approach of a single across-model simulation is in many ways the
most appealing, but alternative indirect methods that treat the unknowns k and
0, differently should not be neglected.

Integrating out the parameters. If in each model k, the prior is conjugate
for the likelihood, then p(6y |k, Y) may be explicitly available, and thence can be
calculated the marginal likelihoods

p(Ok|k)p(Y |k, O),)

Pk = == ey
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and finally the posterior probabilities p(k|Y") o p(k)p(Y k). In the very limited
cases where this is possible, Bayesian inference about k, and about 6} given k,
can be conducted separately, and trans-dimensional simulations are not needed.
The approach has been taken a little further by Godsill (2001), who considers
cases of ‘partial analytic structure’, where some of the parameters in 6; may be
integrated out, and the others left unchanged in the move that updates the
model, to give an across-model sampler with probable superior performance.

Within-model simulation. If samplers for the within-model posteriors p(6y|
Y, k) are available for each k, then joint posterior inference for (k,68;) can be
constructed by combining separate simulations conducted within each model.
See Carlin and Louis (1996, §6.3.1) for more detailed discussion.

The posterior p(8;|Y, k) for the parameters 6, is in any case a within-model
notion, and is the target for an ordinary Bayesian MCMC calculation for model

k. Since
p(k1]Y) _ p(k1) p(Ylk1)

p(kolY') a p(ko) p(Yko)
(the second factor being the Bayes factor for model kq vs. kg), to find the poste-

rior model probabilities p(k|Y") for all k it is sufficient to estimate the marginal
likelihoods

p(Y\m:/p(ak,Y\k)dek

separately for each k, using individual MCMC runs. Several different methods
have been devised for this task.

Noting that p(Y'|k) can be expressed as { [[p(6k|k,Y)/p(Y |k, 0x)] d6;} " or
more directly as [ p(Y|k,6)p(6k|k) dfy, leads respectively to the estimates

(Y |k) = Z{ (V|k, 6" }1 and  Po(Y|k) = 1ZpY|k6

based on MCMC samples Bk ,Gk ,... from the posterior p(0:|Y, k) and the
prior p(6i|k), respectively. Both of these are simulation-consistent, but have
high variance, with possibly few terms contributing substantially to the sums
in each case. Composite estimates, based like p; and ps on the importance
sampling identity E,(f) = E,(fp/q), perform better, including those of Newton
and Raftery (1994) and Gelfand and Dey (1994). For example, Newton and
Raftery propose to simulate from a mixture p(6y; Y, k) of the prior and posterior,

and use
S p(Y |k, 6 > (6,")
SN w6y

ps(Y[k) =

where w(8;) = p(0k|k)/D(0k; Y, k).
Chib (1995) has introduced new, indirect, estimates of the marginal likeli-
hood based on the identity p(Y'|k) = p(Y'|k,05)p(05|k)/p(65|k,Y") for any fixed
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parameter point #;. The factors in the numerator are available, and in contexts
where the parameter can be decomposed into blocks with explicit full condition-
als, the denominator can be estimated using simulation calculations that use
the same Gibbs sampling steps as the posterior simulation. Note, however, that
Neal (1999) has demonstrated that Chib’s application of this idea to mixture
models is incorrect. Chib and Jeliazkov (2001) extend the idea to cases where
Metropolis—Hastings is needed.

5 Some issues in choosing a sampling strategy

Several studies have addressed the strengths and weaknesses of reversible jump
MCMC and the other trans-dimensional setups above compared to within-model
simulations that compute marginal likelihoods and thence Bayes factors. Par-
ticularly noteworthy are Dellaportas et al. (2002), Godsill (2001) and Han and
Carlin (2001). Each of these discusses some of the issues involved and provides
comparisons of implementations and performance on test problems, although,
understandably in the present state of our knowledge with these methods, it is
hard to see any of these as entirely definitive.

One of the key matters influencing the choice here is the number of models
to be entertained, taking account of the degree of homogeneity between them.
The ideal situation for the ‘within-model’ strategy would be a case where the
models are all of a different character, and fully-tested samplers with acceptable
performance are already available for each. In such a case, building an across-
model sampler could be very laborious compared to adding marginal likelihood
calculations to each model separately.

Some authors have recorded poor performance with reversible jump methods.
Since reversible jump algorithms embrace all Metropolis—Hastings methods for
the across-model state space, it is hard to believe that there are no methods in
this huge class that would give acceptable performance. It would be fairer to
say that existing examples of reversible jump implementations may be poor tem-
plates for constructing samplers in some new situations. A difficulty is that the
across-model state space may be hard to visualise so that some of the intuition
that guides construction of samplers in simpler spaces is not available.

Others have deemed reversible jump methods cumbersome to construct and
difficult to tune. There seems to be a need for further methodological work, de-
veloping broader classes of across-model samplers, with associated visualisation
techniques, to assist in construction and tuning. Very recent work by Brooks et
al. (2000) may be a good step in this direction; see Section 7.2. Of course, as
in other domains for MCMC, fully-automated sampler construction would be a
tremendous advantage: a very limited step towards this is introduced in Section
6 below.

Finally, the across-model approach does have another potential benefit —
the possibility that jumping models can improve mixing. This is discussed next.



Trans-dimensional Markov chain Monte Carlo 11

5.1 Is it good to jump?

There are various not entirely substantiated claims in the literature to the ef-
fect that jumping between parameter subspaces is either inherently damaging to
MCMC performance and should therefore be avoided where possible, or alterna-
tively that it is helpful for performance, and might even be attempted when it
is not strictly necessary.

For example, Richardson and Green (1997) describe a simple experiment,
illustrated in their Fig. 9, demonstrating that in a particular example of a mixture
problem with a strongly multimodal posterior, mixing is clearly improved by
using a trans-dimensional sampler, while Han and Carlin (2001) claim to have
‘intuition that some gain in precision should accrue to MCMC methods that
avoid a model space search’.

In truth, the proper answer is ‘it depends’, but some simple analysis does
reveal some of the issues. There are three main situations that might be con-
sidered: in the first, we require full posterior inference about (k,6;). A second
possibility is that we wish to make within-model inference about 6}, separately,
for each of a (perhaps small) set of values of k. The third case is where k is really
fixed, and the other models are ruled out a priori. This third option is clearly the
least favourable for trans-dimensional samplers: visits of the (k,6) chain to the
‘wrong’ models are wasted from the point of view of extracting useful posterior
information; let us try to analyse whether superior mixing in these other models
can nevertheless make it worthwhile to use a trans-dimensional sampler.

5.2 The two-model case

For simplicity, we suppose there are just two models, k¥ = 1 and 2, and let 7y
denote the distribution of 6y given k: only 7 is of interest. We have transition
kernels Q11, Qa2, with mQrr = 7 for each k; (we use a notation apparently
aimed at the finite state space case, but it is quite general: for example, 7@
means the probability measure (7Q)(B) = [ 7(dz)Q(z,B)). We now consider
the option of also allowing between-model transitions, with the aid of kernels Q1
and @Qo1; for realism, these are improper distributions, integrating to less than
1, reflecting the fact that in practice across-model Metropolis—Hastings moves
are frequently rejected. When a move is rejected, the chain does not move,
contributing a term to the ‘diagonal’ of the transition kernel; thus we suppose
there exist diagonal kernels D; and D, and we have the global balance conditions
for the across-model moves: m Dy + m2@Q21 = 71 and oDy + m Q12 = mo.

Assuming that we make a random choice between the two moves available
from each state, a and [ being the probabilities of choosing to attempt the
between-model move in models 1, 2 respectively, the overall transition kernel for
the across-model sampler is

p= ( (1-a)Qi1 + aD; aQ12 )
B BQ21 (1= 8)Q2 + 8D

using an obvious matrix notation. The invariant distribution is easily seen to be
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7 = (ym1, (1 = 7)m), where 7 = #/(a + B).

Now suppose we run the Markov chain given by P, but look at the state
only when in model 1. By standard Markov chain theory, the resulting chain
has kernel Qll = (1 - a)Qll +aDy + Oéng{I — (1 — B)QQQ — 6D2}_1,8Q21. The
comparison we seek is that between using 11 or the more complicated strategy
that amounts to using 11, but we must take into account differences in costs
of computing. Suppose that executing Q11 or Q22 has unit cost per transition,
while attempting and executing the across-model moves has cost ¢ times greater.
Then, per transition, the equilibrium cost of using P is y(1 — a) + vyac + (1 —
Y)Be+ (1 —+)(1 — ), and this gives on average ~ visits to model 1. The relative
cost in computing resources of using @11 instead of Q11 therefore simplifies to
(1 —a)+2ac+ a1l — B)/B (using the relationship ya = (1 — v)8).

If we choose to measure performance by asymptotic variance of a specific
ergodic average, then we have integrated autocorrelation times 7 and 7 for Q1
and @11 respectively, and jumping models is a good idea if

T <T{(1-a)+2ac+a(l —B)/8}.

Of course, 7 depends on « and f3.

5.3 Finite state space example

It is interesting to compute these terms for toy finite-state-space examples where
the eigenvalue calculations can be made explicitly. For example, taking D; =
D, = 0.81, corresponding to an 80% rejection rate for between-model moves, and
all the @) matrices to be symmetric reflecting random walks on m = 10 states,
with differing probabilities of moving, to model differently ‘sticky’ samplers,
speciﬁcally (Qll)ijil = 003 (QlQ)i,z’il =0.2x 0.1, (QQl)i,z’il =0.2x 0.1, and
(Q22)4,i+1 = 0.3, we find that model jumping is worthwhile for all ¢ up to about
15, with optimal @ & 1 and § &~ 0.1. This is a situation where the rapid mixing
in model 2 compared to that in model 1 justifies the expense of jumping from 1
to 2 and back again.

5.4 Tempering-by-embedding

Such considerations raise the possibility of artificially embedding a given statis-
tical model into a family indexed by &, and conducting an across-model simula-
tion simply to improve performance — that is, as a kind of simulated tempering
(Marinari and Parisi 1992). A particular example of the benefit of doing so was
given by Hodgson (1999) in constructing a sampler for restoration of ion channel
signals. A straightforward approach to this task gave poor mixing, essentially
because of high posterior correlation between the model hyperparameters and
the hidden binary signal. This correlation is higher when the data sequence is
longer, so a tempering-by-embedding solution was to break the data into blocks,
with the model hyperparameters allowed to change between adjacent blocks. The
part of the prior controlling this artificial model elaboration was adjusted em-
pirically to give moderately high rates of visiting the real model, while spending
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sufficient time in the artificial heterogeneous models for the harmful correlation
to be substantially diluted.

Further evidence that model-jumping can provide effective tempering, ad-
mittedly in a somewhat contrived setting, was provided by Richardson and
Green (1997). They compared fixed-k and variable-k samplers for a normal mix-
ture problem with k& components, applied to a symmetrised bimodal data set. In
this case, there was substantial posterior support for k¥ = 2 and 4; MCMC-based
inference about parameters conditional on & = 3 was greatly superior using the
variable-k sampler.

6 An automatic generic trans-dimensional sampler

The possibility of automating the construction of a MCMC sampler for any given
target distribution is attractive but elusive. It would be a tremendous practical
advantage if the user could just specify the target in algebraic form, perhaps
together with a few numerical constants such as starting values, and leave the
computer both to construct an algorithm and then run it to create a reliable
sample.

The nearest we can come to this ideal at present, for sampling from a
fixed-dimensional density, is the random-walk Metropolis (RWM) sampler (see
Roberts, this volume), in the most simple form where all variables are simul-
taneously updated. Other possibilities, requiring a little more user input, are
Langevin methods, or the hybrid samplers of Duane et al. (1987). RWM is not
a panacea. From a theoretical perspective, it is imperfect since even geometric
ergodicity is not guaranteed, as it requires conditions on the relative size of the
tails of the target and proposal densities. In fact, no kind of ergodicity is certain,
since there may be holes in the support of the target and/or the proposal density
which could prevent irreducibility, but such pathologies are easily avoided. There
is also the important practical consideration that updating all variables at once
prevents the exploitation of factorisations of the target that make the acceptance
probabilities for lower-dimensional updates particularly cheap to compute.

In spite of these drawbacks, the RWM methods are useful and it would be
valuable to have an analogous class of methods for trans-dimensional problems,
particularly for exploratory use. In this section, we propose a rather naive ap-
proach to this quest, but as experiments show, the results are quite promising.

Suppose that for each model k, we are given a fixed ng-vector uz and a
fixed ny X ng-matrix By. Consider the situation where we are currently in state
(k, 61) and have proposed a move to model k', drawn from some transition matrix
(rk,1). The form of the proposed new parameter vector depends on whether ny
is less than, equal to, or more than nj. We set:

i + B [RB,;l(ak — Uk) ?kl if np < ng
o Wi -+ Bk’RBk_l(ek — ///k) if Nk = Ng

1 .
Wi + By R ( Bk (GZ B 'Uk) > if Ngr > N
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Here [- - -]7* denotes the first m components of a vector, R is a fixed orthogonal
matrix of order max{ng,ny }, and u is a (ngp — ny)-vector of random numbers
with density g(u).

Note that if ng < nyg, the proposal is deterministic (apart from the choice of
k'). Since everything is linear, the Jacobian is trivially calculated: if ng > ng,

we have
0(6r) | _ |Br]
O(0k,u)| Bkl
Thus the acceptance probability is min{1, A}, where

if ny
P By ly) rios | Bl [ 900 e <

1 ifng =ny .
p(k,0ly) rrw |Brl 1 § §

g(u)™t if ng > nyg

Since it is orthogonal, the matrix R plays no role in this calculation.

If the model-specific targets p(f |k, y) were normal distributions, with means
i and variances BkBkT, if the innovation variables u were standard normal,
and if we could choose 7y i /e 1, = p(K'|Y)/p(k|Y), these proposals would al-
ready be in detailed balance, with no need to compute the Metropolis—Hastings
accept/reject decision. This is the motivation for the idea.

This suggests that, providing the p(f;|k,y) are reasonably unimodal, with
mean and variance approximately equal to pu; and BkBg, this simple sampler
may be effective. A simple modification, likely to give performance more robust
to heavy tails in the targets, would be to use t-distributions in place of the
normals for u. Another modification, plausibly likely on general grounds to
improve mixing, is to randomise over the orthogonal matrix R, or, more simply,
take R to be a random permutation matrix. By the usual argument about
randomised proposals (Besag et al. 1995, Appendix 1), this randomisation can
be ignored when calculating the acceptance probability.

In applications, we are only likely to have approximations to the mean and
variances of p(6|k,y) when we can conduct pilot runs within each model sepa-
rately — thus limiting the idea to cases where the set of models K is finite and
small. In our implementation, we loop over these models and perform a short
run of RWM on each to estimate the means uj and variances BkB,?. We then
find the lower triangular square root of the variance By (and its determinant)
by Cholesky decomposition; the advantage of using a lower triangular By, is that
we can use forward substitution to multiply Bk_1 into a vector.

Finally, the idea might have broader applicability if the pilot runs were used
also to detect and correct gross departures from normality — perhaps a trans-
formation to reduce skewness could be estimated, for example. We have not
explored such modifications.

6.1 Examples

This method has been implemented as a stand-alone Fortran program, available
from the author by email (P.J.Green@bris.ac.uk), which calls a function writ-
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ten by the user to compute logp(k,8,y). The only other information required
about the problem, also provided by this function, are the number of models,
their dimensions, and rough settings for the centre and spread of each variable,
used for initial values and spread parameters for the RWM moves. The code
is set up to alternate between model-jumping moves as described above, and
within-model moves by RWM.

We have tried the approach on two non-trivial examples; the codes for these
two were identical apart from the information just described.

(a) Variable selection in a small logistic regression problem. Dellapor-
tas et al. (2002) illustrate their comparisons between model-jumping algorithms
on a small data set. This is a 2 x 2 factorial experiment with a binomially
distributed response variable. All 5 interpretable models are entertained, with
numbers of parameters (ng) equal to 1, 2, 2, 3 and 4 respectively. We follow
Dellaportas et al. exactly in terms of prior settings, etc. One million sweeps
of the automatic sampler, many more than is needed for reliable results, takes
about 18 seconds on a 800MHz PC. The acceptance rate for the model-jumping
moves was 29.4%, and the integrated autocorrelation time for estimating E(k|y)
was estimated by Sokal’s method (Green and Han 1992) to be 2.90. The poste-
rior model probabilities were computed to be (0.005, 0.493, 0.011, 0.439, 0.052)
consistent with the results of Dellaportas et al.

(b) Change point analysis for a point process. We revisit the change
point analysis of the coal mine disaster data used in Green (1995). In this
illustration, we condition on the number of change points k lying in the set
{1,2,3,4,5,6} (which covers most of the posterior probability). All the prior
settings, etc., are as in Green (1995). There are 2k + 1 parameters in model
k. For this problem, 1 million sweeps takes about 28 seconds on a 800MHz
PC. The posterior for the number of change points was estimated to be (0.058,
0.251, 0.294, 0.236, 0.117, 0.044) for the values k¥ = 1 to 6. Note that this
differs somewhat from the results reported in Green (1995); in fact if the sampler
derived there is run for 200 000 sweeps instead of 40 000, the results become
very similar. On this problem, the automatic sampler mixes much less well: the
acceptance rate for model-jumping is 5.9%, while the integrated autocorrelation
time estimate rises to 118. This decline in performance is presumably due to the
extreme multi-modal character of many of the parameter posteriors.

For comparison, the sampler described in Green (1995) takes 14 seconds
for 1 000 000 sweeps on this computer, with an acceptance rate of 21% and
estimated autocorrelation time of 67.8. On this basis, the relative efficiency of
the automatic sampler is only (14 x 67.8)/(28 x 118) ~ 29%, but of course the
implementation time was far less.

6.2 Limitations of this approach

I have stressed that this automatic sampler cannot be expected to have very
broad applicability. However, its successful use on the second example above
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shows that it can be surprisingly tolerant to multimodality in the model-specific
targets. (As seen in Figs. 3 and 4 of Green (1995), multimodality is evident even
for k = 2, and it rapidly becomes very severe for larger k.) In such cases, it is
necessary for the proposal spread factors provided to be sufficiently large that
there is adequate jumping between modes, in the pilot runs within each model.

This approach is unlikely to be useful for more than a small set of models,
so that, for example, variable selection between many variables is probably out
of reach. It may, however, be worth exploring whether quite crude approxima-
tions to the means and variances of each target give adequate performance, and
whether such approximations can be generated for variable selection problems
without conducting pilot runs on all models.

7 Methodological extensions
7.1 Delayed rejection

An interesting modification to Metropolis—Hastings is the splitting rejection idea
of Tierney and Mira (1999), which has recently been extended to the reversible
jump setting by Green and Mira (2001), who call it delayed rejection.

The idea is simple: if a proposal is rejected, instead of ‘giving up’, staying
in the current state, and advancing time to the next transition, we can instead
attempt a second proposal, usually from a different distribution, and possibly
dependent on the value of the rejected proposal. It is possible to set the ac-
ceptance probability for this second-stage proposal so that detailed balance is
obtained, individually within each stage. The idea can be extended to further
stages.

By the results of Peskun (1973), generalised in Tierney (1998), such a strategy
is always advantageous in terms of reducing asymptotic variances of ergodic
averages, on a sweep-by-sweep basis, since the probability of moving increases by
stage. Whether it is actually worth doing will depend on whether the reduction
in Monte Carlo variance compensates for the additional computing time for the
extra stages; the experiments reported in Green and Mira (2001) suggest that
this can be the case.

The second-stage acceptance probability is calculated by an argument along
the same lines as that in Section 2 above. We use two vectors of random numbers
u1 and us, drawn from densities g; and gs respectively, and two deterministic
functions mapping these and the current state into the proposed new states,
y = hi(z,u1) and z = ha(x,ur,us), respectively. Both u; and us appear in
the expression for z to allow this second-stage proposal to be dependent on the
rejected first-stage candidate y; for example, z may be a move in a different
‘direction’ in some sense.

The first-stage proposal is accepted with probability «;(z,y) calculated as
usual:
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where u] is such that z = h) (y,u}).

Consider the case where the move to y is rejected. We need to find an accep-
tance probability as(z,2) giving detailed balance for the second-stage proposal
z. As in the single-stage case, we set up a diffeomorphism between (x,u1,us)
and (z,u7,us), where u; and us) would be the random numbers used in the first-
and second-stage attempts from z. Then = = h)(z,u7,us) and the first-stage
move, if accepted, would have taken us to y* = h)(z,u7).

Completing the argument as in Section 2.2, equating integrands after making
the change of variable, we find that a valid choice for the required acceptance

probability is
} . (7.1)

In a model-jumping problem, we would commonly take y and z to lie in the
same model, and y* to be in the same model as x, although as discussed by Green
and Mira, other choices are possible. For example, where models are ordered by
complexity, z might lie between z and y, so that the second-stage proposal is
less ‘bold’.

az(z,z) = min {1, 7(2) G (@) (@) [1 — o (z,5")] ‘a(m@

m(x) g1(u1)g2(u2) [1 — ar(z,y)] [9(z,ur,us)

7.2 Efficient proposal choice for reversible jump MCMC

The most substantial recent methodological contribution to reversible jump
MCMC generally is work by Brooks et al. (2000) on the efficient construction of
proposal distributions.

This is focussed mainly on the quantitative question of selecting the proposal
density (g(u) in Section 2.2) well, having already fixed the transformation (z' =
h(z,u)) into the new space. The qualitative choice of such a transformation h is
perhaps more elusive and challenging.

Brooks, Giudici and Roberts propose several new methods, falling into two
main classes. The first is concerned with analysis of the acceptance rate (2.3)
as a function of u for small v (on an appropriate scale of measurement). The
second class of methods work in a product-space formulation somewhat like that
in Section 3, including some novel formulations with autoregressively constructed
auxiliary variables.

Their methods are implemented and compared on examples including choice
of autoregressive models, graphical gaussian models, and mixture models.

7.3 Diagnostics for reversible jump MCMC

Monitoring of MCMC convergence on the basis of empirical statistics of the
sample path is important, while not of course a substitute for a good theoretical
understanding of the chain. There has been some concern that across-model
chains are intrinsically more difficult to monitor, perhaps implying their use
should be avoided.

In truth, the degree of confidence that convergence has been achieved pro-
vided by ‘passing’ a diagnostic convergence test declines very rapidly as the
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dimension of the state space increases. In more than, say, a dozen dimensions,
it is difficult to believe that a few, even well-chosen, scalar statistics give an ad-
equate picture of convergence of the multivariate distribution. It is high, rather
than variable, dimensions that are the problem.

In most trans-dimensional problems in Bayesian MCMC it is easy to find
scalar statistics that retain their definition and interpretation across models,
typically those based on fitted and predicted values of observations, and these are
natural candidates for diagnostics, requiring no special attention to the variable
dimension.

However, recognising that there is often empirical evidence that a trans-
dimensional simulation stabilises more quickly within models than it does across
models, there has been recent work on diagnostic methods that address the trans-
dimensional problem more specifically. A promising approach by Brooks and
Giudici (2000) is based on analysis of sums of squared variation in sample paths
from multiple runs of a sampler. This is decomposed into terms attributable to
between- and within-run, and between- and within-model variation.
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Proposal densities, and product space methods
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1 Introduction

In this article, Peter Green has provided the most informative and complete
survey currently available of the issues surrounding Bayesian model uncertainty
using MCMC methods. Naturally he has focussed on the reversible jump meth-
ods which have dominated the field over recent years, although he has pointed
out the close relationships with the product space formulations of Besag (1997)
Carlin and Chib (1995), Godsill (2001) and Dellaportas et al. (2002).

Practitioners have readily adopted reversible jump methods for use in com-
plex Bayesian problems, and yet even after several years in the literature the
methods have a reputation for being somehow ‘difficult’ to understand and still
more difficult to implement successfully. Green’s article helps further to demys-
tify the reversible jump methodology by providing some useful new discussion
material and a very transparent derivation of the basic results. The article also
discusses recent developments in proposal design and introduces a novel proposal
mechanism for general models.

So, is there any methodological work still to be done in the field? Green’s
article is very clear on this issue: the basic frameworks, whether pure reversible
jump or combined with product space ideas, are well established; however, the
specifics of a generic implementation are not, and it is clear that it is these
areas that can most benefit from renewed research effort. In fact, given the
general interest from a wide variety of disciplines in this topic, there have been
surprisingly few methodological developments in the area up to now. In the
following sections, I will focus on just two developing topics: automatic proposal
generation and product space methods.

Y

2 Construction of proposal densities

Key to the effective operation of reversible jump methods is the choice of pro-
posal distributions. Most applications to date have constructed proposals on an
ad hoc basis, attempting to place proposed parameters in regions of high proba-
bility mass in the new model’s parameter space. This can be successful in some
cases, but it is tempting to seek an automatic procedure that does not require
the tuning and pilot runs often required in these ad hoc settings. There have
been some recent advances in this direction, as discussed in Green’s article. T
will attempt to interpret Green’s new proposal mechanism in the light of more
standard Gaussian approximation methods for reversible jump.
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In Godsill (2001) it was suggested that an optimal choice of proposal would
be the full conditional posterior probability for the parameters in the new model,
i.e. set (0 ) = p(i|k',y), in which case the acceptance ratio simplifies to

p(k'ly)q(Kk|k")
p(kly)q(k'|k)

where ¢(k'|k) is the probability that model k' is proposed from model k. We
note that this highly idealised setting leads to an acceptance probability which
is constant for all values of 6. This is in agreement with the objectives of the
‘higher order methods’ proposed in Brooks et al. (2000), in which proposals are
specifically designed so that one or more derivatives of the acceptance ratio are
set to zero locally at a chosen representative ‘centering’ point. Brooks et al.
(2000) lend some theoretical weight to the suggestion that p(6 |k, y) is a good
proposal density by proving that the capacitance of the Markov chain is optimised
by this choice of proposal in a simple two-model setting, and I would conjecture
that the result is also valid in much more general model selection settings. This
suggestion leads to the much-used idea that the proposal distribution, while in
practice never equal to p(|k',y), should be designed to approximate the full
conditional if possible. A natural starting point here is a Gaussian proposal
matching the 1st and 2nd order moments of the target conditional distribution.
Using the same notation as Green’s article, we propose a ny-dimensional vector
v from the standard normal density, and generate the proposed parameter as
Ok = pr + Byrv, giving acceptance ratio

P(K', Or ly)q(k[K')g(v")| By |
p(k, Ok|y)a(k'|k)q(v)| Be| -

In the case that the target parameter conditional is indeed Gaussian with mo-
ments ju; and By B] this simplifies to

p(K'[y)q(k|k)
p(kly)a(k|k")’

and we have perfectly adapted Metropolis—Hastings on the marginal model index
space. Thus, in the case of a Gaussian target with correctly specified Gaussian
proposals, the acceptance probabilities of this and Green’s proposed method are
identical and hence the two samplers explore the model indexing space equally
rapidly. The interesting possibilities with Green’s proposal arise when the targets
are non-Gaussian, since the acceptance ratio of Green’s method then appears to
eliminate some of the variability in the acceptance ratio by replacing q(v')/q(v)
in (2.1) with a single term ¢(u), which is the density of a generally much lower
dimensional Gaussian than either ¢(v) or ¢(v'). The question then arises as to
how the target ratios p(k', 0y |y)/p(k, 0 |y) compare between the two approaches,
and it is clear that when the target is strongly non-Gaussian, either method may
well lead to high acceptance probabilities. However, this is qualitative thinking

A=

(2.1)

A=
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and it would be very interesting to discover how these two related approaches
fared relative to one another in the examples of Section 6.1 of Peter Green’s
article. Clearly the approximation of each candidate model, even with a Gaus-
sian, will require a great deal of work for large model spaces. However, one can
envisage hybrid approaches in which a substantial proportion of the parameters
remain fixed in model jumping proposals, as in many standard reversible jump
implementations to date, while a Gaussian approximation is applied to a more
manageable subset of parameters conditional on those fixed parameters.

3 Product space methods

Product space methods provide another interesting viewpoint on model uncer-
tainty, since they allow simulation to be performed, at least conceptually, on
a fixed dimension space. Various authors have shown that reversible jump al-
gorithms can be obtained as special cases of product space methods (and vice
versa); see Besag (1997), Godsill (2001) and Dellaportas et al. (2002).

Very general classes of model space sampling can be written in the composite
model space framework of Godsill (2001), which is a product space represen-
tation, allowing for any overlap between parameters of different models that is
computationally convenient (for example, nested models and variable selection
models are easily encoded within the framework). Consider a ‘pool’ of N param-
eters § = (01,...,0n). A candidate model k can be described in terms of this
pool of parameters by means of an indexing set Z(k) = {i1(k),i2(k), ..., iy (k)}
which contains (k) distinct integer values between 1 and N. The parameters
67(xy of model k are then defined as 7(;) = (0;; 7 € Z(k)). In the simplest case
we have Z(k) = k, which leads to a straightforward model selection scenario with
no overlap between model parameters. In other cases, such as variable selection
or nested models, it may be convenient to ‘share’ parameters between more than
one model. The posterior distribution for the composite model space can now
be expressed as

P(?J|k= 9I(k)) p(al(k) |k) p(a—z(k) |01(k) k) p(k)
p(y) ’

where 6_z() = (0;;1 € {1,..., N} —Z(k)) denotes the parameters not used by
model k. All of the terms in this expression are defined explicitly by the chosen
likelihood and prior structures except for p(6_z(x)|0z(k), k), the ‘prior’ for the
parameters in the composite model which are not used by model k. It is easily
seen that any proper distribution can be assigned arbitrarily to these parameters
without affecting the required marginals for the remaining parameters. This
fixed dimensionality distribution can now be used as the target for an MCMC
algorithm. One of the possible benefits of such a scheme, as suggested in Godsill
(2001), is that parameters from models other than the current model can in
principle be stored and used for construction of effective proposals when those
other models are proposed again. There are, however, some basic pitfalls which
can beset this type of approach. The first is storage: one wouldn’t wish to

p(k,0ly) =

(3.1)
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store all parameters of all models in memory if the pool of parameters 6 is
large. The second is tractability. Consider the pure model selection scenario
in which there is no overlap between parameters, i.e. Z(k) = k. Now, it might
seem sensible to set the target density for some or all of the unused parameters
equal to the data conditional posterior, in which case they can be updated at
each iteration according to any suitable MCMC scheme and they will always
be generating useful values for future model jumping proposals. This can be
achieved by choosing the arbitrary prior distribution for these parameters as
follows:
p(0-16x, k) = T] (6;14.v)-
ik

However, it is easily verified that model jumping proposals under such a scheme
require the marginal model probabilities in the acceptance ratio, and hence the
method is self-destroying as it requires us to know exactly one of the quantities
we wish to estimate! Clearly the arbitrary prior probability should not be chosen
in this intuitively reasonable way.

Another approach which might have similar benefits would be to assign some
reasonable distributions for the arbitrary priors, such as a tractable approxima-
tion to the data conditional posterior distribution for those parameters, but to
apply a very slowly mixing Markov chain when updating these parameters. This
would allow the parameters of each model to retain some memory of their earlier
configuration when that model was last selected by the MCMC. A promising
approach related to this concept has been devised by Brooks et al. (2000). In
it they assume a nested structure to the models, and augment the parameter
space with sufficient auxiliary variables to make the total parameter space equal
in dimensionality to the most complex candidate model. These auxiliary vari-
ables are then slowly updated at each iteration according to an autoregressive
Markov chain with a standard Gaussian stationary distribution. The auxiliary
variables are then used directly to generate deterministic model jumping propos-
als to higher order models. The extra memory and persistence introduced into
the chain in this way is shown to induce a better exploration of the tails of the
model order distribution for a graphical models example.

More general schemes with this flavour can easily be devised based on the
general product space framework. It may be reasonable, for example, to use
one or more of the auxiliary parameters to help construct a random proposal
rather than a deterministic one. Another extension would address the memory
storage problems: rather than update all of the auxiliary parameters using a
slowly mixing Markov chain, update only those parameters within some suitably
chosen ‘neighbourhood’ of the currently selected model. The remaining auxiliary
parameters are sampled independently directly from their target distribution,
which would be carefully chosen for tractability, and hence do not need to be
sampled until their corresponding model number is proposed.

It seems reasonable that ideas of this sort can lead to improved performance
of reversible jump algorithms. There will usually however be an increased burden
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of computational load and memory storage requirements, so it must remain to be
seen whether performance improvements are sufficient to merit the extra work.

Trans-dimensional Bayesian nonparametrics with spatial
point processes

Juha Heikkinen
Finnish Forest Research Institute, Helsinki, Finland

1 Introduction

Point processes are a class of models where the notion of variable dimension is
inherent. The main part of this discussion is concerned with the application
of marked point processes as prior models in nonparametric Bayesian function
estimation, reformulating and revising earlier joint work with Elja Arjas and list-
ing some other related work (Section 2). Accordingly, the discussion is centered
on trans-dimensional modelling rather than on the simulation techniques them-
selves, and connects to some of the material in the chapters by Sylvia Richardson
and Hurn, Husby and Rue. I shall end, however, with an example illustrating the
role of the dimension-matching requirement (Section 3). The point made there
is rather marginal to Green’s main message, but hopefully interesting and/or
instructive to modellers working with constraints.

2 Nonparametric Bayesian function estimation

Heikkinen and Arjas (1998) introduced a (trans-dimensional) nonparametric
Bayesian approach to the estimation of the intensity function of a spatial Poisson
process. The approach is similar to that in the change point and image analysis
examples of Green (1995), and can be directly generalised to a wide variety of
function estimation problems (Heikkinen 1998). It has been applied to a prob-
lem involving simultaneous interpolation, regression, and intensity estimation
(Heikkinen and Arjas 1999), and closely related methods have been developed
for image analysis (Nicholls 1998; Mgller and Skare 2001), multivariate regres-
sion and classification (Denison et al. 2002b), and disease mapping (Knorr-Held
and Rafler 2000; Denison and Holmes 2001). The following paragraphs show
how I would now prefer to introduce the method.

Consider the estimation of real valued surfaces f : S — R defined on a
bounded support S C R2. A trans-dimensional approximation of f is obtained
through its parametrisation by marked point pattern 8 = {(z1,v1), ..., (zx, yx)},
in which the locations are a simple point pattern x = {z1,...,z} on S with a
variable number k£ of randomly located points, and the marks represent values
yi = fo(z;) of the approximating function. To complete the approximation, we
apply some rough and simple inter/extrapolation rule to determine fy(s), s €
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S\ z. By pointwise averaging over a large number of such rough approximations,
varying the number and locations of the points in z, we can then obtain a
smooth estimate of f. With unbounded k the parameter space is effectively
infinite-dimensional and hence the inference honestly nonparametric, yet the
computations can be handled by trans-dimensional MCMC.

The inter/extrapolations of Heikkinen and Arjas (1998) were step functions
on the Voronoi tessellations of S generated by the location patterns z (see Hurn
et al. this volume, Section 2.2; S. Richardson, this volume, Section 3.1). However,
Voronoi tessellations could be replaced by the Delaunay or other more general
triangulations (cf. Nicholls 1998). In addition to the more flexible geometry, tri-
angular partitions offer the opportunity of making the function approximations
piecewise linear instead of piecewise constant (see below). In the estimation of
smooth functions, I would prefer the computationally simpler Delaunay trian-
gulations, the greater flexibility of other triangulations being more valuable in
problems like segmentation (Nicholls 1998).

Our prior of z was the homogeneous Poisson process, and large differences
between nearby function values were penalised by a Markov random field prior
for y|z. This led to unnecessary complications with the normalising constants,
which could have been avoided by modelling the marked point pattern 6 directly
as a nearest-neighbour Markov point process with correlated marks, as did Mgller
and Skare (2001). Then the marginal prior of z is no longer a Poisson process,
but that seems like a small price to pay for an otherwise more tractable model.
Although Denison and Holmes (2001) deem this smoothing unnecessary in the
first place, I think that it should lead to qualitatively more reasonable individual
approximations of f, and thereby to more realistic inferences on its shape, for
example. For extrapolations beyond the convex hull of the data, dependence
priors seem essential.

Motivated by such considerations, let me then sketch an approach I would
currently suggest. Assuming S to be a polygon, let § be a marked point process
including locations on the edges and vertices of S as in the model of Nicholls
(1998). Define the prior density of 6 with respect to the distribution of the
appropriate marked Poisson process by something like

p) <X exp{ -1 3 (-},

Ti~g T

where z; ~, z;, if the tiles S(z;z;) > x; and S(z;z;) 3 x; of the Voronoi
tessellation generated by = are adjacent. Finally, define fy as that unique surface
which passes through all points (z;,y;) of § and is linear within each triangle in
the Delaunay tessellation generated by z. If f can only take a finite (and small)
number of distinct values, as in image classification, for example, I would follow
Mgller and Skare (2001) in using the Voronoi step functions and an extension
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like
p0) M ep{ -1 3 10 £ )

of the Potts model, where 1 denotes the indicator function.

Theoretically, this approach works regardless of the dimension of S. How-
ever, the effort needed both for the implementation and for the computations
increase rapidly with the dimension; for an example, see the 3-d problem in reser-
voir modelling tackled by Mgller and Skare (2001). Independence priors allow
for a computationally feasible approach for moderate dimensional S (Denison
et al. 2002b), but Denison et al. (2002a) have found that they do not work well
in very high dimensions, either.

3 On constraints and dimension matching

In most applications of trans-dimensional MCMC, the major problem seems
to be finding efficient proposal distributions. When there are constraints in
the parameter space, however, even the choice of wvalid proposals may not be
trivial. A typical case in the function estimation context are problems involving
interpolation (Heikkinen and Arjas 1999), of which a toy example is given below.

Consider the function estimation problem of Section 2 with the constraint
f(s0) = fo for some s¢ € S, and step function approximations fy taking constant
value y; on each Voronoi tile:

k
fo(s) = Zyil{s € S(z;m;)}.

Suppose we wish to implement the simplest possible sampler with two kinds of
move proposal: death of one random point in the current 8 and birth of a new
point (£,n) with a uniform random location £ € S and mark 5 sampled from
some distribution on R. In Green’s formalism, we would then have r = 2k,
" =2k+2, u=(£n), and d = 0 for the birth move from 8 with k points to
0" = 6U{u}. Butif so € S(xU{&};€), then the only proposal yielding a positive
acceptance probability would be the (one-dimensional) 8’ = 6 U (&, fo). This
would leave the mark 7 of u unused and hence violate the dimension-matching
requirement,.

The concrete consequences of the failure in dimension-matching are revealed
only when trying to work out the acceptance probability for the death of (z;, y;)
with sq € S(z;x;). For positive chances of acceptance, we are forced to propose
function value fo on that tile S(z \ z;;2;) which contains so in the proposed
tessellation. In other words, the death proposal is

0" =0\ {(zi.y5), (xj,95)} U (2. 95),

where y; = fo. But if y; # fo, then our simple sampler cannot reverse this move,

because it proposes y; = yi = fo in the birth move from 6.



28  Trans-dimensional Bayesian nonparametrics with spatial point processes

Returning to the birth move 2’ = z U ¢ with sy € S(z';€), the considerations
above lead to the conclusion that the dimension we cannot use in proposing the
function value on tile S(z'; ), that is, the random mark 5 of u, must be used to
perturb the current function value y;(= fo) on the tile S(z;z;) containing s.
See Heikkinen and Arjas (1999) for the details of one such sampler.

One might ask, why not just keep a fixed generating point (s, fo) and avoid
the whole difficulty, but this would result in different smoothing around sq than
elsewhere.
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