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Algorithms for finding structure in data have become increasingly
important both as tools for scientific data analysis and as models
of human learning, yet they suffer from a critical limitation.
Scientists discover qualitatively new forms of structure in observed
data: For instance, Linnaeus recognized the hierarchical organiza-
tion of biological species, and Mendeleev recognized the periodic
structure of the chemical elements. Analogous insights play a
pivotal role in cognitive development: Children discover that object
category labels can be organized into hierarchies, friendship net-
works are organized into cliques, and comparative relations (e.g.,
‘‘bigger than’’ or ‘‘better than’’) respect a transitive order. Stan-
dard algorithms, however, can only learn structures of a single
form that must be specified in advance: For instance, algorithms for
hierarchical clustering create tree structures, whereas algorithms
for dimensionality-reduction create low-dimensional spaces. Here,
we present a computational model that learns structures of many
different forms and that discovers which form is best for a given
dataset. The model makes probabilistic inferences over a space of
graph grammars representing trees, linear orders, multidimen-
sional spaces, rings, dominance hierarchies, cliques, and other
forms and successfully discovers the underlying structure of a
variety of physical, biological, and social domains. Our approach
brings structure learning methods closer to human abilities and
may lead to a deeper computational understanding of cognitive
development.

cognitive development � structure discovery � unsupervised learning

D iscovering the underlying structure of a set of entities is a
fundamental challenge for scientists and children alike

(1–7). Scientists may attempt to understand relationships be-
tween biological species or chemical elements, and children may
attempt to understand relationships between category labels or
the individuals in their social landscape, but both must solve
problems at two distinct levels. The higher-level problem is to
discover the form of the underlying structure. The entities may
be organized into a tree, a ring, a dimensional order, a set of
clusters, or some other kind of configuration, and a learner must
infer which of these forms is best. Given a commitment to one
of these structural forms, the lower-level problem is to identify
the instance of this form that best explains the available data.

The lower-level problem is routinely confronted in science and
cognitive development. Biologists have long agreed that tree
structures are useful for organizing living kinds but continue to
debate which tree is best—for instance, are crocodiles better
grouped with lizards and snakes or with birds (8)? Similar issues
arise when children attempt to fit a new acquaintance into a set
of social cliques or to place a novel word in an intuitive hierarchy
of category labels. Inferences like these can be captured by
standard structure-learning algorithms, which search for struc-
tures of a single form that is assumed to be known in advance
(Fig. 1A). Clustering or competitive-learning algorithms (9, 10)
search for a partition of the data into disjoint groups, algorithms
for hierarchical clustering (11) or phylogenetic reconstruction
(12) search for a tree structure, and algorithms for dimension-
ality reduction (13, 14) or multidimensional scaling (15) search
for a spatial representation of the data.

Higher-level discoveries about structural form are rarer but
more fundamental, and often occur at pivotal moments in the
development of a scientific field or a child’s understanding (1, 2,
4). For centuries, the natural representation for biological
species was held to be the ‘‘great chain of being,’’ a linear
structure in which every living thing found a place according to
its degree of perfection (16). In 1735, Linnaeus famously pro-
posed that relationships between plant and animal species are
best captured by a tree structure, setting the agenda for all
biological classification since. Modern chemistry also began with
a discovery about structural form, the discovery that the ele-
ments have a periodic structure. Analogous discoveries are made
by children, who learn, for example, that social networks are
often organized into cliques, that temporal categories such as the
seasons and the days of the week can be arranged into cycles, that
comparative relations such as ‘‘longer than’’ or ‘‘better than’’ are
transitive (17, 18) and that category labels can be organized into
hierarchies (19). Structural forms for some cognitive domains
may be known innately, but many appear to be genuine discov-
eries. When learning the meanings of words, children initially
seem to organize objects into nonoverlapping clusters, with one
category label allowed per cluster (20); hierarchies of category
labels are recognized only later (19). When reasoning about
comparative relations, children’s inferences respect a transitive
ordering by the age of 7 but not before (21). In both of these
cases, structural forms appear to be learned, but children are not
explicitly taught to organize these domains into hierarchies or
dimensional orders.

Here, we show that discoveries about structural form can be
understood computationally as probabilistic inferences about
the organizing principles of a dataset. Unlike most structure-
learning algorithms (Fig. 1 A), the model we present can simul-
taneously discover the structural form and the instance of that
form that best explain the data (Fig. 1B). Our approach can
handle many kinds of data, including attributes, relations, and
measures of similarity, and we show that it successfully discovers
the structural forms of a diverse set of real-world domains.

Any model of form discovery must specify the space of
structural forms it is able to discover. We represent structures
using graphs and use graph grammars (22) as a unifying
language for expressing a wide range of structural forms (Fig.
2). Of the many possible forms, we assume that the most
natural are those that can be derived from simple generative
processes (23). Each of the first six forms in Fig. 2 A can be
generated by using a single context-free production that
replaces a parent node with two child nodes and specifies how
to connect the children to each other and to the neighbors of
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the parent node. Fig. 2 B–D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2 A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P�S, F�D� � P�D�S�P�S�F�P�F�. [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S�F) favors graphs where k, the number of clusters,
is small: P(S�F) � �k if S is compatible with F, and P(S�F) � 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter � determines the

crocodile

bat

gorilla

ostrich

robin

turtle

snake
PCA,
MDS

Hierarchical
clustering

robin

ostrich

crocodile

snake

turtle

bat

gorilla

Unidimensional
scaling

ostrich

gorilla

crocodile

turtle

robin

bat

snake

bat
ostrich

robin

turtle

gorilla

crocodile

snake

crocodile

turtlesnake

robin

ostrich

gorilla

bat

gorillasnake

turtle bat
robin

ostrichcrocodile

gorilla 
bat 

turtle 
snake 

crocodile 
robi n 

ostrich 

f  1 f  2 f  3 f  4 f  5 f 100 . . .
. . .

. . .

gorilla 
bat 

turtle 
snake 

crocodile 
robi n 

ostric h 

f  1 f  2 f  3 f  4 f  5 f 100 . . .
. . .

. . .

Clustering

Data

Structure

Form Tree

Circumplex
models

A

Minimum

B

spanning
tree

robin

ostrich

crocodile

snake

turtle

bat

gorilla

Fig. 1. Finding structure in data. (A) Standard structure learning algorithms search for representations of a single form that is fixed in advance. Shown here
are methods that discover six different kinds of structures given a matrix of binary features. (B) A hierarchical model that discovers the form F and the structure
S that best account for the data D. The model searches for the form and structure that jointly maximize P(S, F�D) � P(D�S)P(S�F)P(F).
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.
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extent to which graphs with many clusters are penalized, and is
fixed for all of our experiments. The normalizing constant for
P(S�F) depends on the number of structures compatible with a
given form, and ensures that simpler forms are preferred when-

ever possible. For example, any chain Sc is a special case of a grid,
but P(Sc�F � chain) � P(Sc�F � grid) because there are more
possible grids than chains given a fixed number of entities. It
follows that P(Sc, F � chain�D) � P(Sc, F � grid�D) for any
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dataset D, and that the grid form will only be chosen if the best
grid is substantially better than the best chain.

The remaining term in Eq. 1, P(D�S), measures how well the
structure S accounts for the data D. Suppose that D is a feature
matrix like the matrix in Fig. 1. P(D�S) will be high if the features
in D vary smoothly over the graph S, that is, if entities nearby in
S tend to have similar feature values. For instance, feature f1 is
smooth over the tree in Fig. 1B, but f100 is not. Even though Fig.
1 shows binary features, we treat all features as continuous
features and capture the expectation of smoothness by assuming
that these features are independently generated from a multi-
variate Gaussian distribution with a dimension for each node in
graph S. As described in SI Appendix, the covariance of this
distribution is defined in a way that encourages nearby nodes in
graph S to have similar feature values, and the term P(D�S) favors
graphs that meet this condition.

In principle, our approach can be used to identify the form F
that maximizes P(F�D), but we are also interested in discovering
the structure S that best accounts for the data. We therefore
search for the structure S and form F that jointly maximize the
scoring function P(S, F�D) (Eq. 1). To identify these elements, we
run a separate greedy search for each candidate form. Each
search begins with all entities assigned to a single cluster, and the
algorithm splits a cluster at each iteration, using the production
for the current form (Fig. 2). After each split, the algorithm
attempts to improve the score, using several proposals, including
proposals that move an entity from one cluster to another and
proposals that swap two clusters. The search concludes once the
score can no longer be improved. A more detailed description of
the search algorithm is provided in SI Appendix.

We generated synthetic data to test this algorithm on cases
where the true structure was known. The SI Appendix shows
graphs used to generate five datasets, and the structures found
by fitting five different forms to the data. In each case, the model
recovers the true underlying form of the data.

Next, we applied the model to several real-world datasets, in
each case considering all forms in Fig. 2. The first dataset is a
matrix of animal species and their biological and ecological
properties. It consists of human judgments about 33 species and
106 features and amounts to a larger and noisier version of the
dataset shown schematically in Fig. 1. The best scoring form for
this dataset is the tree, and the best tree (Fig. 3A) includes
subtrees that correspond to categories at several levels of
resolution (e.g., mammals, primates, rodents, birds, insects, and
flying insects). The second dataset is a matrix of votes from the
United States Supreme Court, including 13 judges and their
votes on 1,596 cases. Some political scientists (35) have argued
that a unidimensional structure best accounts for variation in
Supreme Court data and in political beliefs more generally,
although other structural forms [including higher-dimensional
spaces (36) and sets of clusters (37)] have also been proposed.
Consistent with the unidimensional hypothesis, our model iden-
tifies the chain as the best-scoring form for the Supreme Court
data. The best chain (Fig. 3B) organizes the 13 judges from
liberal (Marshall and Brennan) to conservative (Thomas and
Scalia).

If similarity is assumed to be a measure of covariance, our
model can also discover structure in similarity data. Under our
generative model for features, the expression for P(D�S) includes
only two components that depend on D: the number of features
observed and the covariance of the data. As long as both
components are provided, Eq. 1 can be used even if none of the
features is directly observed. We applied the model to a matrix
containing human judgments of the similarity between all pairs
of 14 pure-wavelength hues (38). The ring in Fig. 3C is the best
structure for these data and corresponds to the color circle
described by Newton. Next, we analyzed a similarity dataset
where the entities are faces that vary along two dimensions:

masculinity and race. The model chooses a grid structure that
recovers these dimensions (Fig. 3D). Finally, we applied the
model to a dataset of distances between 35 world cities. Our
model chooses a cylinder where the chain component corre-
sponds approximately to latitude, and the ring component
corresponds approximately to longitude.

The same algorithm can be used to discover structure in
relational data, but we must modify the distribution P(D�S).
Suppose that D is a square frequency matrix, where D(i, j)
indicates the number of times a certain relation has been
observed between entities i and j (Fig. 4). We define a model
where P(D�S) is high if the large entries in D correspond to edges
in the graph S. A similar model can be defined if D is a binary
relation rather than a frequency matrix. Given a relation D, it is
important to discover whether the relation tends to hold between
elements in the same cluster or only between different clusters,
and whether the relation is directed or not. The forms in Fig. 2 A
all have directed edges and nodes without self-links, and we
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and a tree. As the number of features grows even further, the tree becomes
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lations can be found in SI Appendix.
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expanded this collection to include forms with self-links, forms
with undirected edges, and forms with both of these properties.

First, we applied the model to a matrix of interactions among
a troop of sooty mangabeys. The model discovers that the order
is the most appropriate form, and the best order found (Fig. 4A)
is consistent with the dominance hierarchy inferred by prima-
tologists studying this troop (39). Hierarchical structure is also
characteristic of human organizations, although tree-structured
hierarchies are perhaps more common than full linear orders.
We applied the model to a matrix of interactions between 13
members of George W. Bush’s first-term administration (40).
The best form is an undirected hierarchy, and the best hierarchy
found (Fig. 4B) closely matches an organizational chart built by
connecting individuals to their immediate superiors. Next, we
analyzed social preference data (41) that represent friendships
between prison inmates. Clique structures are often claimed to
be characteristic of social networks (42), and the model discovers
that a partition (a set of cliques) gives the best account of the
data. Finally, we analyzed trade relations between 20 commu-
nities in New Guinea (43). The model discovers the Kula ring,
an exchange structure first described by Malinowski (44).

We have presented an approach to structure discovery that
provides a unifying description of many structural forms, dis-
covers qualitatively different representations for a diverse range
of datasets, and can handle multiple kinds of data, including
feature data, relational data, and measures of similarity. Our
hypothesis space of forms (Fig. 2) includes some of the most
common forms, but does not exhaust the set of cognitively
natural or scientifically important forms. Ultimately, psycholo-
gists should aim to develop a ‘‘Universal Structure Grammar’’
(compare with ref. 45) that characterizes more fully the repre-
sentational resources available to human learners. This universal
grammar might consist of a set of simple principles that generate
all and only the cognitively natural forms. We can only speculate
about how these principles might look, but one starting place is
a metagrammar (46) for generating graph grammars. For in-
stance, all of the forms shown in Fig. 2 A can be generated by a
metagrammar shown in SI Appendix.

Our framework may be most readily useful as a tool for data
analysis and scientific discovery, but should also be explored as
a model of human learning. Our model helps to explain how
adults discover structural forms in controlled behavioral exper-
iments (40), and is consistent with previous demonstrations that
adults can choose the most appropriate representation for a
given problem (47). Our model may also help to explain how
children learn about the structure of their world. The model
shows developmental shifts as more data are encountered, and

often moves from a simple form to a more complex form that
more faithfully represents the structure of the domain (Fig. 5 and
SI Appendix). Identifying the best form for a domain provides
powerful constraints on inductive inference, constraints that may
help to explain how children learn new word meanings, concepts,
and relations so quickly and from such sparse data (48–51).
Discovering the clique structure of social networks can allow a
child to predict the outcome of interactions between individuals
who may never have interacted previously. Discovering the
hierarchical structure of category labels allows a child to predict
that a creature called a ‘‘chihuahua’’ might also be a dog and an
animal, but cannot be both a dog and a cat.

As examples like these suggest, form discovery provides a way
of acquiring domain-specific constraints on the structure of
mental representations, a possibility that departs from two
prominent views of cognition. A typical nativist view recognizes
that inductive inference relies on domain-specific constraints but
assumes that these constraints are innately provided (52–54).
Chomsky (52), for instance, has suggested that ‘‘the belief that
various systems of mind are organized along quite different
principles leads to the natural conclusion that these systems are
intrinsically determined, not simply the result of common mech-
anisms of learning or growth.’’ A typical empiricist view em-
phasizes learning but assumes no domain-specific representa-
tional structure. Standard methods for learning associative
networks (55) and neural networks (56) use the same generic
class of representations for every task, instead of attempting to
identify the distinctive kinds of structures that characterize
individual domains. Without these constraints, empiricist meth-
ods can require unrealistically large quantities of training data to
learn even very simple concepts (57). Our framework offers a
third view that combines insights from both these approaches
and shows how domain-specific structural constraints can be
acquired by using domain-general probabilistic inference. As
children learn about the structure of different domains, they
make discoveries as impressive as those of Linnaeus and Men-
deleev, and approaches like ours may help to explain how these
discoveries are possible.
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We describe our hypothesis space of structural forms in
more detail, and formally specify the distributions P (S|F )
and P (D|S). We then describe our implementation of our
model, and introduce the data sets that led to the results in
Figs. 3 and 4. We expand on the developmental shift de-
scribed in the main text (Fig. 5), and finish by comparing our
approach to previous models of structure learning.

All data sets along with code for running our model can
be downloaded from http://charleskemp.com

A Hypothesis Space of Structural Forms

The first six forms in Fig. 2A are primitive forms, each of
which can be generated using a node-replacement graph gram-
mar with a single production. To grow a graph, we start with a
seed graph and repeatedly split nodes according to the gram-
mar. For all primitive forms except the ring, the seed is a
graph with one node and no edges. For the ring, the seed is a
single-node graph with a self link.

The remaining forms in Fig. 2A—the grid and the
cylinder—can be expressed as products of primitive forms.
A grid is the Cartesian graph product of two chains, and a
cylinder is the product of a ring and a chain.1 We grow grids
by representing the two dimensions separately, and using the
chain grammar to grow one of the dimensions. Cylinders can
be generated similarly.

When working with feature or similarity data, our hypoth-
esis space of structural forms includes undirected versions of
the eight forms in Fig. 2A. For example, the undirected ver-
sion of an order is a fully connected graph. When working
with relational data, for convenience we restrict the analysis
to graphs where each node represents a non-empty cluster of
entities. Trees, grids and cylinders allow nodes to be empty,
and we remove these from our collection of structural forms,
leaving five forms in total. Given a relation it is important to
discover whether the relation tends to hold between elements
in the same cluster, and whether the relation is directed or
not. The forms in Fig. 2A use nodes without self-links, and
therefore assume that the relation does not hold within clus-
ters. We create a set of 10 forms by supplementing each form
with an alternative that uses nodes with self-links, but is oth-
erwise identical. Each of these 10 forms uses directed edges,
and for each we include an additional form with undirected
edges. In total, then, our hypothesis space of relational forms
includes 20 candidates.2 The four chain-structured forms in
this hypothesis space are shown in Fig. S1.

A Meta-Grammar for Generating Structural Forms

Although we focus on the eight forms in Fig. 2, it is natural
to consider other possibilities. We have suggested that graph
grammars provide a unifying language for expressing many
different structural forms, and ultimately it may be possible
to develop a ‘Universal Structure Grammar’ that generates all
and only the cognitively natural forms.

As an initial step towards this goal, note that all of the
grammars in Fig. 2 can be generated from the template in Fig.

directed

undirected

no self−links

self−links

self−links

no self−links

Fig. S1. The four chain-structured forms used for relational data.

⇒

A

B

C

⇒

D

⇒

⇒

Fig. S2. Generating graph grammars from a meta-grammar. (A) The six gram-

mars in Fig. 2A correspond to subsets of the template shown here. (B,C,D) Subsets

of the production in A that grow chains, orders, and trees.

S2A. The right-hand side of this template includes 12 arrows,
and we can create a range of new productions by removing
some of these arrows. Figs. S2 B-D show how three of the
grammars in Fig. 2 correspond to subsets of the template.
Combining the template in Fig. S2A with a procedure for
removing arrows creates a meta-grammar [1] that generates
grammars for many structural forms. Some of these forms,

1A two dimensional Euclidean space can be generated as the regular Cartesian product of two
chains, where each chain is viewed as a continuous object rather than a graph. Our generative
model for feature data extends naturally to continuous spaces, but we restrict ourselves here to
graph structures.
2Only 17 of these forms are actually distinct. A partition (with or without self-links) remains the
same when converted to an undirected graph. An undirected order with self links is a fully connected
graph, and is very similar to a partition graph without self links (a graph with no edges). In both
cases, all clusters stand in the same relationship to each other.
3 There are methods for learning partitions [2] and trees [3] when the set of entities is countably
infinite, and future work should consider whether these methods can be used to develop a framework
for learning many kinds of forms.
4In the case of trees, internal nodes are required to be empty, but we do not allow empty leaf nodes.
5If S is a tree, since entities may only appear at its leaves, we adopt the convention that |S| is
equal to the number of leaf nodes in S.
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Table. S1. Number of k-cluster structures for several dif-
ferent forms

Form F C(F, k)
Partition 1
Directed Chain k!
Undirected Chain k!

2

Order k!
Connected 1
Directed Ring (k − 1)!

Undirected Ring (k−1)!
2

Directed Hierarchy kk−1

Undirected Hierarchy kk−2

Tree (2k − 5)!!

although certainly not all, are likely to be useful for structure
discovery. In principle, a learning system could begin with
just this meta-grammar and go on to discover any form that
is consistent with the meta-grammar.

All of the grammars generated by the meta-grammar in
Fig. S2 include just one production, but additional forms can
be generated if we allow grammars with multiple productions,
and productions where the edges on the right hand side are
chosen probabilistically. Our work so far has focused on sim-
ple grammars that generate some of the most frequently used
forms, but further exploration of the space of grammars is an
important direction for future work.

Generating Structures from Structural Forms

Suppose that we are working with n entities.3 A structure
S is a graph where the nodes correspond to clusters of entities.
S is compatible with F if S can be generated by the genera-
tive process defined for F , and if S contains no empty nodes
when projected along any of its component dimensions (Fig.
S3).4 There is a finite collection of structures that are com-
patible with a given form F , and P (S|F ) is non-zero only for
graphs in this collection. To encourage the model to choose
the simplest adequate representation for a domain, we weight
each structure according to the number of nodes it contains:

P (S|F ) ∝



0 if S is incompatible with F

θ|S| otherwise,
[S1]

where 0 < θ ≤ 1, and |S| is the number of nodes in S.5 For
all analyses reported in this paper we set θ = e−3, which
means that each additional node reduces the log probability
of a structure by 3. In most cases, similar results are found
by setting θ = 1, which produces a uniform distribution over
structures of a given form. Analyses of synthetic data, how-
ever, suggest that a complexity penalty is useful when fitting
grids and cylinders. Without this penalty, the model may in-
troduce additional nodes that improve the fit slightly but that
do not capture important structural distinctions (Fig. S4).

The normalizing constant for the distribution in Equa-
tion S1 is the sum

X

S

P (S|F ) =
X

S is compatible with F

θ
|S|

.

To compute this quantity, we must consider all possible ways
of putting n entities onto a graph of form F . Let S(n, k) be
the Stirling number of the second kind: the number of ways

3

1
2

4

6

5A B C
5 63 4

1 2

5 6

3 4

1 2

Fig. S3. Cluster graphs and entity graphs. (A) A cluster graph that is incompat-

ible with the grid form, since the middle node will be empty if the graph is projected

onto the vertical axis. (B) A cluster graph that is compatible with the grid form.

(C ) An entity graph corresponding to the cluster graph in (B).

BA

1 3

4 5 6

7 8

1 2 3

4 5 6

7 8 99

2

Fig. S4. Capturing a preference for simple structures. (A) Setting θ < 1 en-

courages the model to find structures with few nodes. The model therefore prefers

grids and cylinders where most of the nodes are occupied. (B) Setting θ = 1 pro-

duces a uniform distribution over all graphs compatible with a given form. The model

may now introduce additional nodes that improve the fit slightly by capturing metric

properties (perhaps entities 9 and 8 are less similar than entities 6 and 5), but that

do not capture important structural differences.

to partition n elements into k nonempty sets. Let C(F, k)
be the number of F -structures with k occupied cluster nodes.
Expressions for C(F, k) for all forms except the grid and the
cylinder are shown in Table S1. The number of n-entity struc-
tures with form F is

n
X

k=1

S(n, k)C(F, k).

For all forms F except the grid and the cylinder, the normal-
izing constant for Equation S1 is

X

S is compatible with F

θ
|S| =

n
X

k=1

S(n, k)C(F, k)θk
.

This equation groups the F -compatible structures into
classes that share the same partition of the entities. To com-
pute the normalizing constant for product structures like the
grid and the cylinder, it is more convenient to group the F -
compatible structures into classes that share the same basic
topology. Let G(n, i, j) be the number of ways to put n enti-
ties on an undirected i by j grid so that no dimension of the
grid remains unoccupied. The normalizing constant for grids
is now

X

i≤j≤n

G(n, i, j)θij
.

6See [5, 6, 7] for related work on Gaussian graphical models.
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Similarly, if Y (n, i, j) is the number of ways to put n entities
on an undirected i by j cylinder so that no dimension remains
unoccupied, the normalizing constant for cylinders is

X

i≤n,j≤n

Y (n, i, j)θij
.

G(·, ·, ·) can be computed using the function L(·, ·), where
L(n, i) is the number of ways to put n entities on an undi-
rected i node chain so that no node remains empty:

L(n, i) =



1 if i = 1
i!
2
S(n, i) if i > 1

where S(n, i) is the Stirling number of the second kind.
We now have

G(n, i, j) =

(

L(n, i)L(n, j) if i 6= j
L(n,i)2+L(n,i)

2
if i = j.

In the case where i = j, we have accounted for the fact that
the grid can be rotated without changing the configuration.

The counts for undirected cylinders can be computed sim-
ilarly. Define

R(n, i) =
L(n, i)

i

where R(n, i) is the number of ways to put n entities on an i

node ring so that no node remains empty. Then

Y (n, i, j) = L(n, i)R(n, j).

Generating Data from Structures

Suppose that S is a directed graph with nodes that correspond
to clusters of entities.
Feature Data
Let D be an entity-feature matrix where the (i, j) entry in-
dicates the value of entity i on feature j. We represent the
structure of the set of entities using undirected entity graphs.
Cluster graphs are converted to entity graphs by adding a
node for each entity, connecting each entity to the cluster
node that contains it, and replacing each directed edge with
an undirected link (Fig. S3). We set P (D|S) = P (D|Sent)
where Sent is the entity graph corresponding to cluster graph
S.

Given an entity graph Sent, we expect nearby entities in
the graph to have similar features, and formalize this intuition
by assuming that the features are independently generated
from a Gaussian distribution over the graph [4].6 Suppose
that Sent is a graph with n + l nodes, where the first n nodes
correspond to entities and the remaining l nodes are latent.
Let f be a feature vector which assigns a continuous value
fi ∈ R to each node i in the graph.

Let W be a n+l by n+l weight matrix, where wij = 1
eij

if

nodes i and j are joined by an edge of length eij and wij = 0
otherwise. We now define the graph Laplacian ∆ = E − W

where E is a diagonal matrix with entries ei =
P

j
wij . A

generative model for f that favors features which are smooth
over the graph Sent is given by

P (f |W ) ∝ exp

 

−
1

4

X

i,j

wij(fi − fj)
2

!

= exp

„

−
1

2
f

T∆f

«

.

[S2]

Equation S2 indicates that our prior p(f |W ) penalizes a fea-
ture vector f whenever fi 6= fj and i and j are adjacent in
the graph, and that the penalty increases as the edge between
i and j becomes shorter (i.e. wij increases).

Zhu et al. [4] point out that Equation S2 can be viewed as
a Gaussian prior over f with zero mean and covariance matrix
∆−1. The prior, however, is improper. Note that any feature
vector f has the same probability when shifted by a constant,
which effectively means that the variance of each fi is infinite.
We obtain a proper prior by assuming that the feature value
fi at any entity node has an a priori variance of σ2:

f |W∼ N (0, ∆̃−1) [S3]

where ∆̃ = ∆+V , and V is a diagonal matrix with 1
σ2 appear-

ing in the first n positions along the diagonal and 0 elsewhere.7

Equation S3 specifies how to generate a single feature only.
Typically the data D will include multiple features, and we
assume that the features are conditionally independent given
Sent.

8 To complete the generative model we place priors on
the branch lengths eij and the variance σ2. Both are drawn
from exponential distributions with hyperparameter β:

σ |β ∼ Exponential(β)

eij |Sent, β ∼ Exponential(β) if sij = 1.

For all analyses we set β = 0.4.
Even though we have introduced edge weights wij , we are

interested primarily in the best graph topology for the data
D. The likelihood P (D|Sent) can be computed by integrating
out σ and the edge weights:

P (D|Sent) =

Z

P (D|Sent, W, σ
2)P (W |Sent)P (σ2)dWdσ

2
.

We approximate this integral using the Laplace approxima-
tion. Since the weights wij and the variance σ are both re-
quired to be positive, we transform them to a log scale before
computing the Laplace approximation. To find modal values
of the transformed variables, we ran a gradient-based search
using the ‘Large Scale’ option available as part of MATLAB’s
unconstrained minimization routine.

Our generative model for features assumes that the data
are continuous, but Figs. 3A and 3B were learned from binary
features. When working with binary data, we treat feature
values 0 and 1 as real numbers, and scale the data matrix D

as described below so that the mean entry in the matrix is 0.
Generative models analogous to Equation S2 can be defined
for binary features [8], but structure learning becomes more
difficult: in particular, computing P (D|S) is challenging when
S is multiply connected. Our decision to work with Gaussian
models is motivated by computational issues of this sort, but

7 Zhu et al. [4] use a matrix V that has 1

σ2
everywhere along the diagonal. We prefer our

approach because it allows empty nodes to be added to a weighted graph W without changing the
likelihood P (D|W ). Suppose that we convert graph W to W ′ by adding an empty node k to the
edge between i and j so that dij = d′

ik + d′

kj . Under our model, P (D|W ) = P (D|W ′),

but this result does not hold for the approach of [4].
8We treat all features equally, but it is possible to introduce weights λj for each feature. Equa-

tion S3 then becomes P (fj) ∝ exp

„

− λj

2
fT∆f

«

, where fj is the jth feature. Once we

place a prior on the feature weights (for example, a prior that encourages most weights to be small),
we can simultaneously discover the structure S and the weights for each feature. The weights will
measure the extent to which a feature is smooth over S—the features that match the structure
best will end up with the highest weights.
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extensions of our approach can explore more principled treat-
ments of discrete features.

Throughout this section, we have not been careful to dis-
tinguish between probability density functions and probability
distributions. Since we defined a generative model for contin-
uous vectors f , P (f |W ) should strictly be written as a proba-
bility density function p(f |W ). In practice, however, f is only
observable to some level of accuracy, and we can quantize each
feature vector:

P (f |W ) =

Z

|f−u|<ǫ

p(u|W )du [S4]

where ǫ is a small constant. Equation S4 can be approximated
as

P (f |W ) ≈ p(f |W )

Z

|f−u|<ǫ

du ∝ p(f |W ) [S5]

where the constant of proportionality does not depend on the
structure or the form under consideration, and can be dropped
from our calculations.

Similarity Data
Under our generative model for features, the data matrix D

influences the distribution P (D|Sent) only through the num-
ber of features m and the covariance matrix 1

m
DDT:

log(P (D|W, σ)) = −
mn

2
log(2π)−

m

2
log |∆̃−1|−

1

2
tr(∆̃DD

T)

As long as m and the covariance matrix are provided, our
approach to structure discovery can be used even if none of
the features in D is actually observed. If we assume that a
given (symmetric) similarity matrix is a covariance matrix,
we can therefore learn structural forms from similarity data.
In many cases the similarity matrix will already be positive
definite, but if not we make it so by replacing all negative
eigenvalues with zeroes.

Although we have loosely described 1
m

DDT as a covari-
ance matrix, it can be characterized more precisely. If the
features in D are generated from a Gaussian distribution with
zero mean and unknown covariance Σ, then 1

m
DDT is the

maximum likelihood estimator of Σ. This matrix differs from
the “empirical covariance” found in some textbooks, which
is the maximum likelihood estimator if the features in D are
generated from a Gaussian distribution with unknown mean
and unknown covariance. The two estimators coincide if each
row of D has a mean of zero. When working with feature
data, we normalize D so that the mean value across the en-
tire matrix is zero. In this case, the matrix 1

m
DDT and the

empirical covariance are likely to be similar but not identical,
and deciding to work with one rather than the other should
make little difference.

Relational Data
Suppose now that the data specify relationships between en-
tities rather than features of the entities. We define two
generative models, one for frequency data and the other for
binary relations. Each model takes a single two-place re-
lation as input—for instance, dominates(·, ·) or communi-

cates with(·, ·). Future work can consider cases where multiple
relations must be simultaneously analyzed.

Suppose first that D is a square frequency matrix with
a count dij for each pair of entities (i, j). If the entities are
people, for example, dij may indicate the number of times

that person i spoke to person j. We define a generative model
where P (D|S) is high if the large entries correspond to edges
in the cluster graph S.

Formally, let |a| be the number of entities in cluster a.
Let C be a matrix of between-cluster counts, where Cab is
the total number of counts observed between entities in clus-
ter a and entities in cluster b. Our model assumes that
P (D|S) = P (D|C)P (C|S), and that C is generated from a
Dirichlet-multinomial model:

θ |S, β0, β1 ∼ Dirichlet(α)

C | θ, nobs ∼ Multinomial(θ)

where αab = β0|a||b| if Sab = 0, αab = β1|a||b| if Sab = 1, and
nobs is the total number of observations. The pair (β0, β1)
is drawn from a discrete space: β0 + β1 is drawn uniformly
from { 1

16
, 1

8
, 1

4
, 1

2
, 1, 2, 4, 8, 16, 32} and β0

β0+β1
is drawn uni-

formly from {0.05, 0.15, . . . , 0.45}. A count matrix C is as-
signed high probability under this model if the large entries
in C tend to correspond to edges in the cluster graph S.

As we did for the feature model, we integrate out the pa-
rameters:

P (C|S) =

Z

P (C|S, β0, β1)P (β0, β1)dβ0dβ1

=
1

50

X

(β0,β1)

P (C|S, β0, β1)

where

P (C|S, β0, β1) =

Z

P (C|θ)p(θ|S, β0, β1)dθ

can be computed analytically, since the Dirichlet prior on θ is
conjugate to the multinomial P (C|θ).

Given C, we assume that the Cab counts are distributed
at random between all pairs (i, j) where i belongs to cluster
a and j belongs to cluster b:

P (D|C) =
Y

a,b

„

1

|a||b|

«Cab

.

Binary Relations
A similar approach can be used to analyze binary relations.
Suppose that D is a square binary matrix where dij is 1 if the
relation holds between i and j and 0 otherwise. In a social
setting, for instance, dij may indicate whether i gives orders
to j. We define a generative model where P (D|S) is high if
the non-zero entries in D tend to correspond to edges in the
cluster graph S.

Given a cluster graph S, let zi denote the cluster assign-
ment for entity i. Suppose that there is a parameter θab for
each pair of clusters, and that dij is generated by tossing a
coin with bias θzizj

. We place a prior distribution on the pa-
rameters θab that depends on the edges in the cluster graph,
and that encourages dij to be true when there is an edge be-
tween cluster zi and cluster zj . The model can be written
as:

θab |S, α0, β0, α1, β1 ∼



Beta(α0, β0), if Sab = 0
Beta(α1, β1), if Sab = 1

dij | θ ∼ Bernoulli(θzizj
)

The hyperparameters α0, β0, α1 and β1 are drawn from
a four-dimensional grid where α0 + β0 and α1 + β1 belong to
{ 1

16
, 1

8
, 1

4
, 1

2
, 1, 2, 4, 8, 16, 32} and α0

α0+β0
and α1

α1+β1
belong to
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Fig. S5. Structure discovery results for synthetic data. Five sets of features were generated over the graphs in the left column, and five forms were fit to each dataset. The

structures found are drawn so that entity positions correspond to positions in the picture of the true structure. Each entity has been connected to the cluster node to which it

belongs: for instance, all graphs in the top row have six clusters. The final column shows log posteriors log(P (S, F |D)) for the best structures found, and the best scoring

structure is marked with an asterisk. The difference between the scores for the top two structures ranges from 0.63 (indicating that the chain is about twice as likely as the

grid on the chain-structured data) to 2245 (indicating that the grid is many orders of magnitude more likely than the ring on the grid-structured data). A constant has been

added to the log probabilities along each y axis so that the worst performing structure receives a score close to zero.

{0.05, 0.15, . . . , 0.95}. We sample uniformly from all points on
this grid where α0

α0+β0
≤ α1

α1+β1
, which captures the assump-

tion that relation D is most likely to be true of pairs (i, j)
that correspond to edges in graph S.

As for the frequency model, we integrate out the parame-
ters:

P (D|S) =
X

(α0,β0,α1,β1)

P (D|S, α0, β0, α1, β1)P (α0, β0, α1, β1)

=
X

(α0,β0,α1,β1)

P (D0|α0, β0)P (D1|α1, β1)P (α0, β0, α1, β1)

where D1 represents the entries in D that correspond to edges
in the graph S, and D0 represents the remaining entries in D.
As before, the terms P (D0|α0, β0) and P (D1|α1, β1) are com-
puted by integrating out θ:

P (D1|α1, β1) =

Z

P (D1|θ1)p(θ1|α1, β1)dθ1

where θ1 is a vector containing parameters θab for all pairs
(a, b) such that there is an edge between cluster a and cluster
b. P (D0|α0, β0) is computed similarly.

Model Implementation

The hierarchical generative model in Fig. 1 can be used for
many purposes. If the form of a data set is already known, we
can search for the structure S that maximizes P (S|F ). If the
form of the data is not known, at least two strategies might be
tried. For some applications it may be desirable to integrate
over the space of structures S and compare forms according
to their posterior probabilities P (F |D). Here, however, we

search for the structure S and form F that jointly maximize
P (S, F |D) (Equation 1). Two considerations motivate this
approach. First, we are interested in discovering the structure
S that best accounts for the data. Maintaining a posterior
distribution over structures may lead to optimal predictions
about unobserved features, but human learners often appear
to choose just one representation for a problem. Second, even
if we wanted to integrate over the space of structures, comput-
ing the integral P (F |D) =

R

P (F, S|D)P (S|D)dS is a difficult
challenge.

Our method for identifying the S and F that maximize
P (S, F |D) involves a separate search for each form. Given
data D, for each form F we search for the best structure S

that is consistent with that form. Since the prior on the space
of forms is uniform, the winning structure is the best candi-
date encountered in any of these searches.

The algorithm used for each of these searches is related
to top-down methods for constructing trees and sets of clus-
ters [9, 10], and to the general idea of coarse-to-fine process-
ing [11]. We begin with all the entities in a single cluster,
then use graph grammars like those in Fig. 2 to split the en-
tities into multiple clusters. Whenever a cluster node is split,
the entities previously assigned to this cluster must be dis-
tributed between the two new cluster nodes. We choose two
of these entities at random, assign one to each of the new
clusters, then go through the remaining entities in a random
order, making a greedy assignment for each one. Since this
procedure for splitting a cluster node is not deterministic, the
search algorithm as a whole is not deterministic. At each it-
eration, we attempt to split each cluster node several times,
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and of all splits considered we accept the candidate that im-
proves the score most. The search is not strictly greedy, since
we also use heuristics that attempt to improve the score. One
of these heuristics moves entities between cluster nodes, and
a second attempts to exchange cluster nodes.

Experiments with synthetic data (Fig. S5) suggest that
our search algorithm often recovers the true structure, or a
structure very close to the true structure, but we cannot be
sure that we have found the best structures for the data sets
shown in Figs. 3 and 4. It is possible that improved search
algorithms will identify better representations of these data
sets.

Features and Similarity
When working with feature data or similarity data, we usu-
ally initialize the search process by tying all branch lengths
together. Once the score no longer improves, we untie the
branch lengths and attempt to improve the score further.

For feature and similarity data, the structures encountered
early on in the greedy search can be seen as low-resolution ver-
sions of the structure that will eventually be identified as the
best. This perspective suggests why a greedy search should of-
ten perform well. If we take some true structure and construct
a series of representations at increasingly low resolutions, the
series should provide a path by which a greedy search can
progress from the lowest-resolution version (a structure with
all the entities in one cluster) to the true structure.

Relations
A greedy search which moves from low-resolution structures to
high-resolution structures should work well when fitting some
structural forms (including partitions and dominance hierar-
chies) to relational data. For other forms, however, a greedy
search may fail badly. Consider the case where the true struc-
ture is a ring, and each entity sends a link to exactly one other
entity. There is no low-resolution version of this structure that
seems acceptable: we can group the entities into clusters and
organize those clusters into a ring, but the entities in each
cluster will tend not to send links to the entities in the next
cluster along.

When analyzing relational data, we used two initializa-
tion strategies. The first is the same strategy used for feature
data: we begin with a graph where all the entities are as-
signed to a single cluster. The second strategy uses the best
clusters found for one of the simplest structural forms: par-
titions with no self-links (when fitting this form, we initialize
the search using the first strategy). These clusters are then
used to build initial configurations for each of the remaining
structural forms. For example, when searching for rings, we
start with a chain that connects the two clusters with the
strongest link between them. We continue adding clusters to
the ends of this chain until we have a chain including all the
clusters, then join the ends of this chain to create the ring that
will initialize the greedy search for the best ring structure.

Feature Data

Scores for each form on each data set are shown in Figs. S5,
S6 and S7. Since our search algorithm is not deterministic,
these figures were generated by repeating each search 10 times
and reporting the best structure found.

Given a matrix D with m features, we apply a linear trans-
formation so that the mean value in D is zero, and the maxi-
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Fig. S6. Scores for eight structural forms on feature and similarity data. (A) Each

score represents log(P (S, F |D)) where S is the best structure found for form F .

The scores have been translated that the lowest score in each case is close to zero.

(B) Relative scores for the top four forms for each data set. The differences between

these scores are the same as the differences in A.

mum entry in 1
m

DDT is one. The first property is useful since
our model assumes that the features have zero mean. The sec-
ond property means that it should be sensible to use the same
value of the hyperparameter β for both feature and similarity
data (we set β = 0.4).

If there are missing entries in D, our procedure for trans-
forming the data must be adjusted. In this case, we group the
features so that any two features in a given group are observed
for precisely the same set of entities. Suppose that the largest
group has j features. Consider the reduced matrix D̂ that
is created by including only these j features, and the entities
for which these features are observed. We scale the data so
that the mean value in D is zero, and the maximum entry in
1
j
D̂D̂T is 1.

9In general, we cannot simply ignore the missing data when learning structural forms. If two judges
never sat on the same court, there are no features observed for both of them, which encourages
the model to assign them to the same node in the structure if their ideological positions are even
roughly similar. (Given fully observed data, two entities will usually be assigned to the same node
only if they are highly similar.) Groupings of this sort can affect the relative scores of different
structural forms. We excluded the first Rehnquist court since Kennedy and Powell (who sat only
on that court, and whom Kennedy replaced in 1988) tended to be assigned to the same node, and
this grouping appears to be heavily influenced by the fact that these judges never served together.
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Synthetic Data
Each synthetic data set contains 40 entities and 2000 features.
The features in each data set were generated from the distri-
bution in Equation S3, where ∆̃ is defined over one of the
graphs in the leftmost column of Fig. S5.

Animals
We asked a single participant to make binary judgments in-
dicating whether 106 features applied to 60 animal species.
The data include perceptual features (is black), anatomical
features (has feet), ecological features (lives in the ocean) and
behavioral features (makes loud noises). For the analysis de-
scribed in the paper we chose 33 species (the species in Fig.
5) that are representative of the full set.

Judges
The Supreme Court data are based on all cases heard be-
tween October 1987 and June 2005. This period covers all of
the Rehnquist natural courts except the first. Since at most
9 judges voted on any of the cases, the data include many
missing entries. We assume that the unobserved entries are
missing completely at random, and integrate over all possible
values for these entries.9 The unit of analysis is the case cita-
tion (ANALU=0), and we included cases where DEC TYPE
equals 1 or 5 [12]. Voting behaviors were converted to binary
values: regular concurrence (3) and special concurrence (4)
were converted to majority votes (1), and non-participation
(5) was treated as missing data. Any case with a voting be-
havior other than 1 through 5 was removed from the analysis.
The final data set includes 13 judges and 1596 cases.

Similarity Data

When analyzing similarity data, we need to specify an effec-
tive number of features m on which the similarity judgments
are based. If m is low, then small differences between sim-
ilarity ratings are likely to be ignored, but if m is high our
model will try to account for more of the structure in the
data. For all analyses we set m = 1000. If a similarity matrix
D is not positive semi-definite, we set all negative values in its
eigenspectrum to zero, but otherwise apply no pre-processing.

Colors
The Ekman color data were taken from Shepard [13]. Con-
figurations similar to Fig. 3C have been found using multidi-
mensional scaling to locate the colors in two dimensions [13],
but a ring provides more appropriate constraints on induc-
tive inference. The ring implies that other pure-wavelength
hues will be located somewhere along the ring, but if a two-
dimensional configuration were chosen, other hues would be
(incorrectly) expected to fall in any region of the space.

Faces
We created 16 stimuli using the FaceGen program [14]. The
program includes dimensions for race and gender, and we used
four possible values along each dimension. The dissimilarity
between faces was defined as the Euclidean distance between
their pixel vector representations.

Cities
Dissimilarity was defined as distance along the surface of the
earth. Assuming that the earth is spherical, these distances
can be calculated using the latitude and longitude of each city.
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Fig. S7. Scores for eighteen structural forms on relational data. U indicates an

undirected form, and S indicates a form with self links (see Fig. S1). The scores have

been translated that the lowest score in each case is close to zero.

Relational Data

We used the frequency model to analyze the first two data
sets in Fig. 4 and the binary model for the remaining two.
We ran our search algorithm 20 times for each (form, data set
pair): half of these runs used the first initialization strategy
described above, and the remainder used the second strategy.

Mangabeys
The data represent interactions where one animal in a troop
of mangabeys submitted to another. Range and Noë [15] con-
sider two types of submissive behavior: in the first, ‘the actor
jumps or walks away from an approaching individual,’ and in
the second, ‘the actor leans aside or shifts body position in
response to another individual that approaches or walks by.’
We recoded their data so that a count in the (i, j) cell of the
matrix indicates that i caused j to submit.

Bush Cabinet
We ran Google searches on January 26, 2006 to create a ma-
trix D where Dij is the number of hits for the phrase ‘i told
j,’ and i and j vary over 13 members of the Bush administra-
tion. Although there are some hits for phrases like ‘Bush told
Bush,’ we set the counts along the diagonal to zero.

Prisoners
The 67 prison inmates were asked ‘What fellows in the tier
are you closest friends with?’ [16] Each inmate mentioned
as many friends as he wished. Clique structures similar to
Fig. 3C have been discovered by previous clustering algo-
rithms [16], but most of these algorithms assume in advance
that the best kind of representation is a set of cliques.
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Armshell Trade
Trade relations between 20 New Guinea communities were
taken from Hage and Harary [17]. There is a link between i

and j if community i sends mwali (armshells) to community
j.

Modeling Cognitive Development

As children learn more about a domain, their mental represen-
tations undergo qualitative transitions that have been likened
to paradigm shifts in science [18, 19]. Our model shares this
ability to move between qualitatively different representations
of a domain. Given a small amount of data, our model may
choose a form that is simple, but that does not capture the
true structure of the domain. As more data arrive, the model
should reach a point where the true structural form is pre-
ferred.

To demonstrate a qualitative shift in biological knowledge,
we presented our model with increasing numbers of features
of the animals in Fig. 3A. We could have run this simulation
by randomly sampling smaller data sets from the full feature
matrix, but the results might have been influenced by idiosyn-
cratic properties of the small data sets sampled. To avoid this
problem, we directly specified the covariance of each data set,
and worked with the similarity version of our model. We an-
alyzed data sets where the effective number of features was
5, 20, or 110, and the similarity matrix in each case was the
covariance matrix for the full set of animal features. Even
though the similarity matrices are identical, increasing the ef-
fective number of features should allow the model to discover
more complex representations. When only 5 features are pro-
vided, the model should attempt only to fit the broad trends
in the data, but given 110 features, the model should attempt
to explain some of the more subtle variation in the data.

Fig. 5 shows the representations chosen by our model for
each data set. At first, the simplest form is preferred, and the
model chooses a set of clusters. Given 20 features, the tree
form is preferred, but the chosen tree is simpler than the tree
in Fig. 3A. The final tree is identical to the tree in Fig. 3A:
note that a similarity data set with 110 features is effectively
identical to the data set that led to Fig. 3A.

The developmental shift in Fig. 5 appears similar to a
trajectory that children follow as they learn the meanings
of words. Early in development, children appear to respect
the assumption of mutual exclusivity: they organize objects
into a set of non-overlapping clusters, with one category label
allowed per cluster [20]. Eventually, however, children real-
ize that objects can be organized into taxonomic hierarchies.
Fig. 5 suggests that this insight may be driven in part by the
amount of data available to a word learner.

The ability to learn from raw data may support some of
the earliest and most fundamental shifts in children’s thinking.
Bottom-up learning, however, can only explain some aspects
of cognitive development, and explicit instruction may con-
tribute to the majority of developmental shifts once children
have become proficient language users. Although we have fo-
cused on learning representations from raw data, hierarchical
approaches like ours can naturally handle linguistic input at
multiple levels of abstraction, including all three levels in Fig.
1A. Linguistic input can provide new features (e.g. ‘whales
breathe air’), and can also provide direct information about

a structure S (e.g. ‘whales belong with the mammals rather
than the fish’) or a form F (e.g. ‘the theory of evolution im-
plies that animals should be organized into a tree’). Modeling
learning when input is simultaneously provided at several lev-
els of abstraction is an important goal for future work.

Related Work

In statistical terms, our method for discovering structural
forms can be viewed as an instance of model selection [21].
From a Bayesian perspective, model selection can be achieved
by describing a hypothesis space of models (for us, each
model is a pair (S, F )) and using Bayesian inference to choose
between them. Other approaches are sometimes proposed:
Pruzansky et al. [22] decide whether a similarity matrix is bet-
ter described by a tree or a two dimensional space by finding
the best instance of each form and choosing the structure that
accounts for the most variance. Several authors [23, 24] have
proposed methods for distinguishing between cluster struc-
tures and dimensional structures.

A key feature of our Bayesian approach is that it auto-
matically penalizes unnecessarily complex models. Some such
penalty is essential when considering structural forms of dif-
ferent complexities, since complex forms (e.g. fully connected
graphs) can easily mimic simpler forms. Each chain, for exam-
ple, is a special case of a grid, and it follows that the best grid
Sg will account for any data set D at least as well as the best
chain Sc: P (D|Sg) ≥ P (D|Sc). The approach of Pruzansky
et al. [22] will therefore never choose the simpler form, even
when the data D were actually generated over a chain.10

Bayesian model selection has previously been used to learn
models that are only as complex as warranted by the data, but
often the structural form of the model is assumed to be known
in advance. For instance, Bayesian methods can identify the
number of clusters in a mixture model [25], or the number of
dimensions in a spatial model [26]. Bayesian methods have
also occasionally been used to control complexity in hybrid
models with two different kinds of representations, such as
discrete features and spatial dimensions [27]. Compared to
previous learning algorithms that rely on statistical model se-
lection, two aspects of our approach are particularly distinc-
tive. First, we formulate the problem of structure discovery
as an inference in a hierarchical model where the structural
form of the domain and a specific graph structure are both
represented as latent variables. Second, we specify and search
a diverse set of structural forms using grammars for growing
graph-structured probabilistic models.

Feature Data
Our model for feature data grows out of previous work on
learning the structure of graphical models [5, 6, 7]. Previous
models usually belong to one of two families. The first family
includes models that impose no strong constraints on the form
of the graph structures that are learned. Bayesian approaches
within this family generally use a prior that includes all pos-
sible graph structures, and the prior over this space is usually
relatively simple—for example, Dobra et al. (2004) use a prior
that favors graphs with small numbers of edges. Models in the
second family assume strong constraints on the form of the

10Pruzansky et al. [22] recognize the importance of model complexity, and justify their approach
by arguing that the complexity of trees is approximately equal to the complexity of two dimensional
spaces.
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graph to be discovered, but these constraints are fixed from
the start, not learned from data. Approaches in this second
family include algorithms for phylogenetic reconstruction [28]
that attempt to discover tree-structured graphical models.

Our approach falls in the little-explored territory between
these two families of models. Instead of working with generic
priors over the set of all possible graph structures, our ap-
proach concentrates the prior probability mass on graphs that
correspond to one of a small number of structural forms.11

The ultimate argument for such a prior is that it provides in-
ductive constraints [29] that are well-matched to the problems
we wish to solve. The need for inductive constraints is most
pressing when dealing with sparse data, and sparse data are
the rule rather than the exception in both cognitive develop-
ment and scientific discovery.

Inferences about novel entities account for some of the
most common cases where the available data are sparse. Con-
sider, for example, two children who both have tree-structured
representations of a set of familiar species. Suppose that the
first child realizes that living kinds are tree-structured, but
that the second child does not—in other words, suppose that
the second child entertained all possible graph structures, and
just happened to settle on one that was tree structured. Imag-
ine, now, that both children encounter a new animal. The first
child can slot the animal into her tree relatively easily—she
knows, for example, that the new species will attach to the
taxonomy at exactly one point. The second child faces a much
more difficult problem. Since she need not preserve the tree
structure of her current representation, there may be many
edges that join the new species to her current representation,
and deciding which of these edges exist may require a large
amount of data.

Relational Data
Our relational model also builds on previous methods for dis-
covering structure in relational data [30, 31, 32, 33]. Consider,

for instance, the many previous models for relational cluster-
ing, or identifying clusters of entities that relate to each other
in predictable ways. As for the feature-based case, previous
approaches to relational clustering usually belong to one of
two families. The first family includes models that impose no
strong constraint on the form of the structures to be discov-
ered. Stochastic blockmodels [34, 35] are one example: they
do not incorporate the notion of structural form, and cannot
explicitly realize when a set of clusters takes a simple form like
a ring, or a set of cliques. The second family includes models
that assume that the structural form is known in advance. For
example, there are several algorithms for discovering commu-
nity structures in networks [33, 36]. These approaches usually
assume that the data are organized into a set of cliques, and
that individuals from any given clique tend only to be related
to others from the same clique.

Our model again occupies the little-explored territory be-
tween these two families of approaches. Structural forms are
useful because they provide strong inductive constraints, and
the ability to discover these constraints allows a learner to effi-
ciently handle novel inductive contexts. To see the importance
of structural form in the relational setting, consider a rela-
tional analogue of the novel species scenario described earlier.
Suppose that two baboons have similar representations of the
interactions between animals in their troop—representations
that take the form of an order. One baboon realizes the struc-
tural form of the representation, and the other has indepen-
dently memorized the edges in the representation. Suppose
now that a new baboon appears, and dominates the baboon
that used to occupy the first place in the order. The ba-
boon who knows the structural form of the group can predict
that the new baboon will dominate all the other animals, but
the baboon who has memorized edges can come to no strong
conclusion—for her, any set of directed edges may join the
new baboon to the remaining animals in the troop.
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