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Summary. This paper is a contribution to the methodology of fully Bayesian inference in
a multivariate Gaussian mixture model using the reversible jump Markov chain Monte Carlo
algorithm. To follow the constraints of preserving the £rst two moments before and after the
split or combine moves, we concentrate on a simpli£ed multivariate Gaussian mixture model,
in which the covariance matrices of all components share a common eigenvector matrix. We
then propose an approach to the construction of the reversible jump Markov chain Monte Carlo
algorithm for this model. Experimental results on various data sets demonstrate the ef£cacy of
our algorithm.
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1. Introduction

The Gaussian (or normal) mixture model (GMM) (McLachlan and Peel, 2000; Titterington
et al., 1985) is a ubiquitous statistical tool for density estimation due to its analytical
tractability, asymptotic properties, and universal approximation ability to any continuous
density function. It has also been used in pattern recognition widely (Banfield and Raftery,
1993; Bensmail and Celeux, 1996). Roughly speaking, each component in the GMM stands
for a class that consists of patterns with some similarity. So, each class is implicitly assumed
to follow a Gaussian distribution. For cases where this assumption is not fully met, a natural
extension is to assume that each class is also a mixture of normally distributed subclasses
(Hastie and Tibshirani, 1996). In this paper, we concentrate on the learning problem of
GMM. In most settings, not only the parameters of a GMM, but also its structure, i.e.,
the number of components, are unknown a priori. So, we need to adopt some statistical
procedures to infer the number of components. This may be treated as a model selection
problem. Therefore, learning the GMM consists of two aspects: parameter estimation and
model selection. A class of convenient learning algorithms has been proposed, such as
the traditional expectation maximization (EM) algorithm (Dempster et al., 1977) and its
variants (McLachlan and Krishnan, 1997), and the Markov chain Monte Carlo (MCMC)
methods(Gilks et al., 1996). Recently, a so-called variational Bayes (VB) method has been
proposed (Attial, 2000).
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The main attraction of the EM algorithm is its simplicity. It estimates the parameters
through the maximum likelihood (ML) criterion or in a maximum a posteriori (MAP)
setting. The EM algorithm provides an alternative iterative procedure that converges to a
local maximum in the space of GMM ranked by likelihood. A fundamental problem of the
ML criterion is overfitting. In other words, the likelihood is a non-decreasing function of
the number of components, so the ML cannot be used as a criterion for model selection.
To cope with this problem, several model selection criteria have been proposed based on
Bayesian approximation, such as the Laplace-empirical criterion and Schwarz’s Bayesian
inference criterion (BIC), and based on information theory, such as the AIC of Akaike’s, the
Rissanen’s minimum description length (MDL), the minimum message length (MML), and
the maximum entropy criterion. Generally, the EM algorithm and one of the model selection
methods mentioned above are used separately for parameter estimation and model selection.
On the other hand, the VB method can be itself used for model selection. However, in
the VB framework, parameter estimation and model selection also work in two separate
procedures. Although, Sato (2001) presented an on-line model selection method in the VB
framework, this method is based on a data-driven technique.

The MCMC method provides a powerful scope for realistic statistical modelling and play
a central role in modern Bayesian computation. Grenander and Miller (1994) proposed the
jump-diffusion MCMC random sampling algorithm for varying-dimension problem. A novel
alternative algorithm, termed the reversible jump MCMC (RJMCMC), has been elaborated
in Green (1994, 1995). The RJMCMC algorithm is essentially a random sweep Metropolis-
Hastings method. It constructs the dimension matching transform with a reversible jump
methodology. The RJMCMC algorithm is attractive because it can deal with parameter
estimation and model selection jointly in a single paradigm. The RJMCMC algorithm
has been widely applied to statistical models (Richardson and Green, 1997; Robert et al.,
2000), neural networks (Andrieu et al., 2001; Holmes and Mallick, 1998) and signal process-
ing(Andrieu and Doucet, 1999; Larocque and Reilly, 2002).

In the case where the number of components is fixed, the MCMC method for parame-
ter estimation of univariate GMM has been presented by Diebolt and Robert (1994) (for
multivariate settings, see Robert (1996)). In the case where the number of components are
unknown, a fully Bayesian methodology for the univariate GMM using the RJMCMC algo-
rithm has been proposed by Richardson and Green (1997). However, applying the RJMCMC
algorithm to fully Bayesian inference in the multivariate GMM is still an open problem. In
the univariate setting, Richardson and Green (1997) developed the split-combine moves
and the birth-death moves for the reversible jump. Compared to the birth-death moves,
the split-combine moves are at the core of implementing the reversible jump methodology.
One could also say that they are the main obstacle to the successful application of reversible
jump methodology. The split or combine methods of Richardson and Green’s (1997) are
based on the constraints of preserving the first two moments before and after the split or
combine moves. With these constraints, we can see that the combine move is a well-posed
problem while the split move is an ill-posed one. In the multivariate setting, it is very diffi-
cult to resolve this ill-posed problem due to the need for introducing many free parameters
and keeping the positive definiteness of the covariance matrix.

Richardson and Green (1997) felt that the constraints of preserving the first two moments
before and after the combine or split moves might be too restrictive for the application of the
reversible jump to the multivariate GMM, and they suggested to extend the birth-and-death
moves to include non-empty components and then to dispense with the split-and-combine
moves, or to define combine-and-split moves with respect to the underlying partition driven
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by the data rather than the parameters. At the same time, Richardson and Green (1997)
thought these moves less efficient. Stephens (2000a) used the birth-death process instead
of the reversible-jump methodology, and described an alternative MCMC, the birth-death
MCMC (BDMCMC). However, unlike the reversible jump, the birth-death process did not
utilize the information from the data or the parameters. So the convergence of BDMCMC
is far slower than that of RJMCMC (Cappé et al., 2003).

In this paper, following the framework of Richardson and Green’s (1997), we successfully
develop a methodology of fully Bayesian inference in a multivariate GMM through the
RJMCMC algorithm. The paper is organized as follows. In Section 2, we give the basic
problem of learning the multivariate GMM with the RJMCMC algorithm. In Section 3, the
Bayesian framework for a simplified multivariate GMM is defined. In Section 4, we present
the detailed process of implementing the RJMCMC algorithm for the simplified GMM and
focus our main attention on the design of the split-combine moves. In Section 5, we present
some experiments to demonstrate the efficacy of our algorithm. Some concluding remarks
are given in the final section.

2. Basic Formulation

Let X = {x1,x2, . . . ,xK} ⊂ Rp(p ≥ 1) be K independent observations from a mixture
model with M > 1 components:

p(x) =
M∑

m=1

πmp(x |θm ), (1)

where πm ∈ (0, 1)(m = 1, 2, . . . ,M) are the mixing weights subject to the constraint
M∑
m=1

πm = 1 and the density p(· |θm ) of the mth component is a given parametric fam-

ily of densities indexed by a scalar or vector θm. For the GMM, the component density
p(x |θm ) is a normal probability distribution:

p(x |θm ) =
1

(2π)p/2 det(Σm)1/2
exp

{
−1

2
(x− µm)TΣ−1

m (x− µm)

}
,

where T denotes the transpose operation and θm = (µm,Σm) represent the parameters,
the mean vector and the covariance matrix, of the mth component. We encapsulate these
parameters into a parameter vector Θ = {θ1,θ2, . . . ,θM}. Similarly, we use the notations
Π = {π1, . . . , πM} and Z = {z1, z2, . . . , zK}, where zk = m ∈ {1, . . . ,M} is missing data
that indicates the observation of xk arising from the mth component.

In a fully Bayesian method, the unknowns M,Π, and Θ are drawn from appropriate
prior distributions. Along the lines similar to those of Richardson and Green (1997), we
assume that the joint density of all variables mentioned takes the form

p(M,Π,Z,Θ,X ) = p(M)p(Π|M)p(Z |Π,M) p(Θ |M) p(X |Θ,Z) , (2)

where the conditional independencies p(Θ |Z,Π,M) = p(Θ |M) and p(X |Θ,Z,Π,M) =
p(X |Θ,Z) are imposed. Now, the goal of Bayesian inference is to generate realizations from
the conditional joint density p(M,Π,Θ,Z |X ). Richardson and Green (1997) developed a
methodology for the univariate GMM by using the RJMCMC algorithm, one sweep of which
consists of six types of moves (Richardson and Green, 1997):
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(a) update the mixing weights Π;
(b) update the parameters Θ;
(c) update the allocation Z;
(d) update the hyperparameters;
(e) split one component into two, or combine two into one;
(f) the birth or death of an empty component.

Move type (c) is used for missing data, while move types (a), (b) and (d) are used for
parameter estimation via the Gibbs sampling. Since types (e) and (f) involve changing the
number of component, M , by 1, they constitute the reversible jump and are used for model
selection via the Metropolis-Hastings algorithm. Assume that a move of type m, from s
to a point s′ in a higher dimensional space, is presented. Usually, it is implemented by
drawing a vector of continuous random variables v, independent of s, and obtaining s′ with
an invertible deterministic function f(s,v). Then the acceptance probabilities from s to s′

and from s′ to s are min{1, R} and min{1, R−1}, where

R =
p (s′|x) rm(s′)

p (s|x) rm(s)q(v)

∣∣∣∣
∂s′

∂(s,v)

∣∣∣∣ , (3)

where rm(s) is the probability of choosing move m in state s, q(v) is the density function

of v, and
∣∣∣ ∂s′

∂(s,v)

∣∣∣ is the Jacobian arising from the change of variables from (s,v) to s′.

In the reversible jump methodology proposed by Richardson and Green (1997), the
birth-and-death moves were used for empty components contained in the mixture, while
the split and combine moves were used for non-empty components. Therefore the birth and
death moves are supplements to the split and combine moves.

Here and later, we assume that the ith and jth components are merged as the i′th
component, and the kth component is split into the j ′th and k′th components. In the
univariate setting, Richardson and Green (1997) proposed the constraints of preserving the
first two moments before and after the combine and split moves. In the multivariate setting,
the constraints show that the mean vector and the covariance matrix of the i′th component
satisfy

πi + πj = πi′ , (4)

πiµi + πjµj = πi′µi′ , (5)

πi(Σi + µiµ
T
i ) + πj(Σj + µjµ

T
j ) = πi′(Σi′ + µi′µ

T
i′ ). (6)

On the other hand, because the split is the exact inverse procedure of the combine, the
corresponding mixing weights, the mean vectors and the covariance matrices should satisfy
the following split equations:

πk = πj′ + πk′ , (7)

πkµk = πj′µj′ + πk′µk′ , (8)

πk(Σk + µkµ
T
k ) = πj′(Σj′ + µj′µj′

T ) + πk′(Σk′ + µk′µk′
T ). (9)

Clearly, the combine move is a well-posed problem. However, the split move is an ill-
posed problem because the number of equations is less than the number of unknowns. In the
multivariate setting, it is very difficult to resolve this ill-posed problem due to the need for
constructing many free parameters and keeping the positive definiteness of the covariance
matrix. In this paper, we develop split-and-combine moves following the above constraints
and extend the RJMCMC method to a simplified multivariate GMM.
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3. Bayesian Framework for a Simpli£ed Multivariate GMM

By using the singular value decomposition (Golub and Loan, 1996), the covariance matrix,
Σm, of the components in (1) can be decomposed into

Σm = AmΛmA
T
m for m = 1, . . . ,M,

where Am =
(
a

(m)
1 , . . . ,a

(m)
p

)
is an orthogonal matrix and Λm = diag {λm1, . . . , λmp} a is

diagonal matrix with positive elements. For convenience, we refer to the matrices Am and
Λm as eigenvector and eigenvalue matrices, respectively. We shall use the notation λmi to
denote the ith largest eigenvalue of Σm. Banfield and Raftery (1993) proposed the model-
based clustering methods in terms of the above decomposition of the covariance matrices.
Having reformulated Λm = λm1Dm, Bensmail and Celeux (1996) developed eight schemes
according to different combinations of λm1, Am, and Dm, and Bensmail et al. (1997) then
presented the Bayesian parameter estimation via Gibbs sampling for each scheme.

In this paper, we consider a GMM in which all the covariance matrices have the same
eigenvector matrix. That is, A1 = A2 = · · · = AM = A, where A = (a1, . . . ,ap) ∈ Rp×p is
orthogonal. Employing the notations by Bensmail and Celeux (1996), we denote this model
as [AΛmA

T ]. This simplified GMM is one of the most representative GMMs. This point
has been also mentioned by Bensmail and Celeux (1996), and Bensmail et al. (1997). Our
goal here is to reduce the free parameters arisen during the split move because we know

that an p× p symmetric positive definite matrix has p(p+1)
2 degrees of freedom, whereas its

eigenvalue matrix has only p degrees of freedom. Our paper addresses the fully Bayesian
analysis of this simplified GMM through the RJMCMC algorithm.

It is necessary to choose a proper prior distribution for each parameter in Bayesian infer-
ence. For the number of components, M , we assume that M is uniform on {1, 2, . . . ,Mmax},
where Mmax is pre-specified. The conjugate prior on Π will always be taken as symmetric
Dirichlet distribution

(π1, π2, . . . , πM ) ∼ D(δ, δ, . . . , δ),
and the conjugate prior distributions of µm and Σ−1

m are normal and the Wishart distribu-
tions, respectively,

µm|Σm ∼ N (ξm, τ−1
m Σm) and Σ−1

m ∼ W(rm,Wm),

where the symbol “|” denotes generic conditional dependence. For our model [AΛmA
T ],

we define the prior distribution of the parameter λ−1
mn as Gamma distribution

λ−1
mn ∼ G(rm/2, l−1

mn/2) (m = 1, . . . ,M)(n = 1, . . . , p).

We fix the value of the hyperparameter rm, and the other hyperparameters ξm, τm and
lmn are drawn from normal or gamma priors:

p(ξm) ∼ N (ν, ρ2I),

p(τm) ∼ G(1/2, ρ−2/2),

p(l−1
mn) ∼ G(1/2, ζn/2) (m = 1, . . . ,M)(n = 1, . . . , p).

The prior distribution of the eigenvector matrix A is very delicate to specify due to its
orthogonality. Bensmail et al. (1997) defined its prior as A ∼ W(r, I). However, it cannot
be proven that a matrix distributed according to W(r, I) is orthogonal, so it cannot ensure
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thatA obtained from its full condition is orthogonal. For simplicity, we use a nonparametric
estimation method for A instead of a random sampling. Specifically, we first calculate the
sample mean vector and covariance matrix of K observations x1, . . ., xK :

x̄ =
1

K

K∑

k=1

xk, S =
1

K

K∑

k=1

(xk − x̄)(xk − x̄)T,

respectively, and then let the eigenvector matrix of S be A.

4. The RJMCMC Algorithm for the Simpli£ed Multivariate GMM

One sweep of our reversible jump MCMC algorithm for the mixture [AΛmA
T ] also consists

of six move types as described in Section 2. We present the details of these move types.

4.1. Gibbs Moves

The move types (a)-(d) are Gibbs moves. Following Robert (1996), or Diebolt and Robert
(1994), we present the details of move types (a)-(d).
Move type (a): Simulate the mixing weights Π from the full conditional

(π1, . . . , πM )| · · · ∼ D(δ + n1, δ + n2, . . . , δ + nM ),

where nm is the number of observations allocated to the mth component. Here and later
we use ‘| · · · ’ to denote conditioning on all other variables.
Move type (b): Simulate µm and λmn from the full conditionals

µm| · · · ∼ N
(
ξ̄m,

1

nm + τm
Σm

)
,

λ−1
mn| · · · ∼ G

(rm + nm + 1

2
,
l−1
mj + a

T
n

{
τm(µm − ξm)(µm − ξm)T + Sm

}
an

2

)
,

where

ξ̄m =
τmξm + nmx̄m

τm + nm
, x̄m =

1

nm

∑

k;zk=m

xk, Sm =
∑

k;zk=m

(xk − µm)(xk − µm)T .

Move type (c): Derive the missing data zk (1 ≤ k ≤ K) from a standard uniform
random variable uk, zk = i if pk1 + · · ·+ pk(i−1) < uk ≤ pk1 + · · ·+ pki, where

pki ∝ πi|Σi|−
1
2 exp

{
− 1

2
(xk − µi)

TΣ−1
i (xk − µi)

}
.

Move type (d): Update the hyperparameters ξm, τm and lmj ;

ξm| · · · ∼ N
(
Σ̂m

(
ρ−2ν + τmΣ

−1
m µm

)
, Σ̂m

)
,

τm| · · · ∼ G
(p+ 1

2
,
ρ−2 + (µm − ξm)TΣ−1

m (µm − ξm)

2

)
,

l−1
mj | · · · ∼ G

(1 + rm
2

,
λ−1
mj + ζj

2

)
,

where Σ̂
−1

m = ρ−2I+ τmΣ
−1
m .
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4.2. Split and Combine Moves

In this section, we discuss the split-and-combine moves for the mixture [AΛmA
T ]. The

split-combine moves consist of constructing the split-combine methods and calculating the
Jacobian determinant. We first construct the split and combine methods by solving the split
and combine equations defined in Section 2, and then calculate the value of the Jacobian
determinant of the transformation involved in the split-combine moves.

4.2.1. Combine and Split Methods

Intuitively, it is straightforward to obtain the mixing weight πi′ , the mean vector µi′ and the
covariance matrix Σi′ from (4), (5) and (6). For our GMM in question, since the covariance
matrices of all components share a common eigenvector matrix A, this implies that the
eigenvector matrix of the covariance matrix Σi′ must be A. From (5) and (6), we have

Σi′ =
1

πi′
AT (πiΛi + πjΛj)A+

πiπj
π2
i′

(µi − µj)(µi − µj)
T . (10)

This equation shows that the eigenvector matrix of Σi′ does not necessarily equal A. So,
this prevents us from directly obtaining Σi′ by (10). However, we only need to know the
eigenvalues λi′n(n = 1, . . . , p) of Σi′ , other than Σi′ itself. From (10), we have:

tr(Σi′) =
πi
πi′

tr(Σi) +
πj
πi′

tr(Σj) +
πiπj
π2
i′

(µi − µj)
T (µi − µj),

where the symbol “tr” represents the trace of a matrix. Thus,

p∑

n=1

λi′n =

p∑

n=1

(
πi
πi′

λin +
πj
πi′

λjn

)
+

πiπj
π2
i′
‖µi − µj‖2. (11)

Here we refer to (4), (5) and (11) as a new set of the combine equations. Applying the
theorem 8.1.8 in Golub and Loan (1996) to equation (10), we have

λi′n =
πi
πi′

λin +
πj
πi′

λjn + qn
πiπj
π2
i′
‖µi − µj‖2, n = 1, . . . , p

with q1 + · · ·+ qp = 1. An intuitive approach to choosing qn’s is to set

qn =
(µin − µjn)

2

‖µi − µj‖2
, n = 1, . . . , p.

The resultant λi′n’s obviously satisfy the combine equation (11).

On the other hand, since the split moves is the exact inverse procedure of the combine
moves, the corresponding mixing weights, the mean vectors and the covariance matrices
should satisfy (7), (8) and the following equation:

p∑

n=1

λkn =

p∑

n=1

(
πj′

πk
λj′n +

πk′

πk
λk′n

)
+

πj′πk′

π2
k

‖µj′ − µk′‖2. (12)
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Clearly, resolving the split equations (7), (8) and (12) is an ill-posed problem. Here we
construct a set of solutions for this ill-posed problem as follows:

πj′ = πkα, πk′ = πk(1− α), (13)

µj′ = µk −
√

πk′

πj′

p∑

n=1

λ
1
2

knunan,

µk′ = µk +

√
πj′

πk′

p∑

n=1

λ
1
2

knunan, (14)

λj′n = βn(1− u2
n)

πk
πj′

λkn,

λk′n = (1− βn)(1− u2
n)

πk
πk′

λkn for n = 1, 2, . . . , p, (15)

where α is randomly sampled from the Beta distribution Be(1, 1), βn’s are randomly sam-
pled from Be(1, 1), and the value of un is sampled from Be(2, 2) and the its sign is equally
likely to be either positive or negative. It is easy to find that the πj′ , µj′ , λj′i, πk′ , µk′ and
λk′i, determined above, satisfy (7), (8) and (12).

4.2.2. The Acceptance Probabilities for Split and Combine Moves

Now, we calculate the acceptance probability of split and combine moves: min{1, R} and
min{1, R−1}. From (3), we have

R =
p(M + 1,Π,Z,Θ|X )dM+1

p(M,Π,Z,Θ|X )bMPallocq(·)
|det(J)| ,

where q(·) = p(α)p(β1, . . . , βp)p(u1, . . . , up), Palloc is the probability of making this partic-
ular allocation, bM and dM are respectively the probabilities of choosing split and combine
moves, and

p(M + 1,Π,Z,Θ|X )

p(M,Π,Z,Θ|X )
= (likelihood ratio)

p(M + 1)

p(M)
(M + 1)

π
δ−1+nj′

j′ π
δ−1+nk′

k′

π
δ−1+nj′+nk′

k B(δ,Mδ)

×
(2π)−p/2

∣∣τ−1
k Σk

∣∣1/2
∣∣∣τ−1
j′ τ−1

k′ Σj′Σk′

∣∣∣
1/2

exp

[
−
1

2

{
(µj′ − ξj′)

T τj′Σ
−1
j′ (µj′ − ξj′)

+(µk′ − ξk′)
T τk′Σ

−1
k′ (µk′ − ξk′)− (µk − ξk)

T τkΣ
−1
k (µk − ξk)

}]

×

(
Γ(rk/2)

Γ(rj′/2)Γ(rk′/2)

)p p∏

n=1

λkn
(
λj′nlj′n

2

)−rj′/2
(
λk′nlk′n

2

)−rk′/2

λj′nλk′n

(
λknlkn

2

)−rk/2

exp

{
−
1

2

p∑

n=1

[
λ−1
j′nl

−1
j′n + λ−1

k′nl
−1
k′n − λ−1

kn l
−1
kn

]}
,

where B(·, ·) is the Beta function.
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From the transformation defined by (13), (14) and (15), we can obtain the Jacobian
matrix J as




α πk 01×p 01×p 01×p 01×p
(1− α) −πk 01×p 01×p 01×p 01×p

0p×1 0p×1 I −
√

πk′

πj′
AΛ

1
2

k − 1
2

√
πk′

πj′
AΛ

− 1
2

k U 0p×p

0p×1 0p×1 I
√

πj′

πk′
AΛ

1
2

k
1
2

√
πj′

πk′
AΛ

− 1
2

k U 0p×p

0p×1 0p×1 0p×p −2 πk

πj′
ΛkBU

πk

πj′
B(I−U2) πk

πj′
Λk(I−U2)

0p×1 0p×1 0p×p 2 πk

πk′
Λk(B− I)U πk

πk′
(I−B)(I−U2) πk

πk′
Λk(U

2 − I)




,

(16)
where 0p×1 is the p × 1 zero vector, 01×p is the 1 × p zero vector, 0p×p is the p × p zero
matrix, and U = diag{u1, u2, . . . , up} and B = diag{β1, β2, . . . , βp} are diagonal. The
absolute value of the determinant det(J) is

|det(J)| = π3p+1
k

(πj′πk′)
3p
2

p∏

n=1

λ
3
2

kn(1− u2
n). (17)

The detailed derivations of the Jacobian matrix J and its determinant are given in Appen-
dices A and B, respectively.

Note that in the case of one-dimensional setting, the mean vector and covariance matrix
degenerate to scalars, respectively, i.e., p = 1, λk = σ2

k, and u ∼ Be(2, 2). It is easy to
see that (14) and (15) degenerate to the split method of Richardson and Green’s (1997).
Moreover, (17) reduces to the equation given by Richardson and Green’s (1997).

4.3. Birth and Death Moves

Our birth and death moves can be straightforwardly obtained from the ones in one dimen-
sional setting of Richardson and Green (1997). We first make a random choice between
birth and death with the same probabilities bM and dM as above. For a birth, a mixing
weight and parameters of the new component proposed are drawn using

πm∗ ∼ Be(1,M), µm∗|Σm∗ ∼ N
(
ξm∗, τ

−1
m∗Σm∗

)
,

λ−1
m∗n ∼ G

(
rm∗
2

,
l−1
m∗n
2

)
(n = 1, . . . , p).

The acceptance probabilities for birth and death are min{1, R} and min{1, R−1} respec-
tively (Richardson and Green, 1998), where

R =
p(M + 1)

p(M)

1

B(δ,Mδ)
πδ−1
m∗ (1− πm∗)

K+Mδ−M (M + 1)

× dM+1

(M0 + 1)bM

1

g1,M (πm∗)
(1− πm∗)

M−1.

Here M is the number of components and M0 the number of empty components, before the
birth.
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Fig. 1. Dataset 1: (a) original data points; (b) overall predictive density; (c) the contour of overall
predictive density; (d) the number of components vs. the number of sweeps.

5. Experimental Results

In this section, we present our experiments on several data sets to demonstrate the efficacy of
our proposed algorithm. These data sets have been analyzed with the hierarchical mixtures
defined in Section 3, which slightly differ from those of Richardson and Green (1997). That
is, we add an extra layer of priors to infer the mean vectors and use a different prior
hyperparameter for the covariance matrix of each component. Referring to the sensitivity
analysis of posterior distribution with respect to prior assumptions and the suggestions of
selecting hyperparameters by Richardson and Green (1997), we set the hyperparameters:

rm = 4, δ = 1, ν = 1
K

∑K
k=1 xk, ρ

2 = 1
K

∑K
k=1 ‖xk − ν‖2, ζn = 1

K

∑K
k=1(xkn − νn)

2, and
Mmax = 32, in the following experiments.

For convenience of interpretation and visualization, the first experiment uses three sets
of two-dimensional data, each of which is generated from a bivariate GMM (Table 1).
These three datasets and their corresponding experimental results are shown in Figures 1-
3, respectively. For each of the three data sets, we ran our algorithms for 200,000 sweeps.
The first 100,000 sweeps are considered as burn-in, and will be discarded. All the inferences
are based on the next 100,000 sweeps. From Figures 1- 3, we can see that all the runs are
mixing quite well, therefore 200,000 sweeps should be enough.
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Table 1. The £ve multivariate GMMs used in the experiments.
GMMs µ Σ K

µ1 = (17.5, 5.5)
T 50

1 µ2 = (12.5, 11)
T

Σ1 = Σ2 = Σ3 =

[
1.2 0
0 1.5

]
50

µ3 = ( 3, 8)T 50

µ1 = (22, 17)
T 50

2 µ2 = (8.5, 11.5)
T

Σ1 = Σ2 = Σ3 =

[
1.2 0
0 1.5

]
50

µ3 = (5.5, 13)
T 50

µ1 = (12, 11)
T 50

3 µ2 = (11, 13.5)
T

Σ1 = Σ2 = Σ3 =

[
1.2 0
0 1.5

]
50

µ3 = ( 8, 11.5)
T 50

µ1 = (-20, 3, -20, 20, -10, 5, 11, 15)
T Σ1 = diag(4, 7, 2, 3, 6, 2, 2, 3) 100

µ2 = (-15, -2, 10, -15, 0, -8, 8, 12)
T Σ2 = diag(10, 4, 2, 1, 4, 6, 2, 2) 50

µ3 = (-14, 14, -10, 10, -6, -10, 9, 5)
T Σ3 = diag(7, 3, 5, 3, 5, 6, 7, 2) 50

µ4 = (-10, -7, 0, -10, 3, -5, 3, 5)
T Σ4 = diag(3, 7, 4, 2, 2, 1, 5, 3) 100

4 µ5 = (10, -12, 5, 0, 6, 8, -3, 5)
T Σ5 = diag(10, 3, 3, 2, 3, 2, 9, 1) 50

µ6 = (15, -4, -15, 15, 8, 20, 1, 12)
T Σ6 = diag(5, 6, 1, 8, 1, 5, 6, 2) 100

µ7 = (24, 21, -5, 5, -3, 10, -9, -3)
T Σ7 = diag(5, 2, 4, 3, 1, 4, 3, 2) 100

µ8 = (35, -22, 30, -25, 10, -8, 18, 3)
T Σ8 = diag(10, 4, 2, 1, 14, 6, 1, 2) 50

µ9 = (40, -30, 35, 5, -22, 10, 22, -1)
T Σ9 = diag(2, 1, 2, 13, 4, 13, 5, 1) 100

µ10 = (60, -9, 15, -5, -12, 0, 12, -2)
T Σ10 = diag(2, 8, 2, 3, 4, 3, 5, 12) 100

µT1 = (-1, 5, -3, 4) Σ1 =




1.0 0.2 0.5 0.8
0.2 1.4 0.3 0.6
0.5 0.3 1.2 0.3
0.8 0.6 0.3 1.8


 100

5 µT2 = (4, 10, 6, 7) Σ2 =




1.4 0.6 0.4 0.2
0.6 0.7 0.6 0.6
0.4 0.6 2.3 0.6
0.2 0.6 0.6 0.8


 75

µT3 = (7, 15, 11, 10) Σ3 =




1.3 0.2 0.3 0.8
0.2 1.2 0.3 0.5
0.3 0.3 2.1 0.3
0.8 0.5 0.3 1.6


 75

Table 2. Posterior probability of M for the £ve datasets.
Data p(M |X )

1 p(3|X ) = 0.8561, p(4|X ) = 0.1310, p(5|X ) = 0.0120, p(6|X ) = 0.0009

2 p(2|X ) = 0.1660, p(3|X ) = 0.6390, p(4|X ) = 0.1652, p(5|X ) = 0.0272, others = 0.0026

3 p(2|X ) = 0.6442, p(3|X ) = 0.2421, p(4|X ) = 0.0712, p(5|X ) = 0.0177, others = 0.0248

4 p(10|X ) = 0.5810, p(11|X ) = 0.3215, p(9|X ) = 0.0841, others = 0.0134

5 p(3|X ) = 0.9321, p(4|X ) = 0.0588, p(5|X ) = 0.0091
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Fig. 2. Dataset 2: (a) original data points; (b) overall predictive density; (c) the contour of overall
predictive density; (d) the number of components vs. the number of sweeps.

At each sweep of the algorithm, the values for the mixing weights and parameters (Π,Θ)

are produced, with which the densities p(·|M,Π,Θ) =
∑M

m=1 πmp(·|θm) can be computed.
Averaging p(·|M,Π,Θ) across the MCMC run, conditioned on fixed value of M , gives an
estimate of E [p(·|M,Π,Θ)|M,X ], a Bayesian predictive density estimate of the GMM with
M components. An essential attribute of the RJMCMC sampler is its ability to jump
between different values of M . A plot of the changes in M against the number of sweeps is
depicted in Figures 1- 3(d).

The first dataset is very easy to analyze because it consists of three well-separated
classes. From Figure 1 and Table 2, we can ascertain that the number of classes, i.e., the
number of components, is 3. The second dataset is more difficult to analyze because two
of three classes are severely overlapped, and the other one is also moderately overlapped
with these two. Note that the posterior p(M = 3|X ) = 0.6390, p(M = 2|X ) = 0.1660 and
p(M = 4|X ) = 0.1652, so the probability of clustering the observations into three classes
is the largest. The third dataset is the most difficult to analyze. From Figure 3(a), it is
seen that all classes are severely overlapped and it cannot tell us how many classes there
are by visual inspection. Our algorithm considers the most possible number of classes as
2, and the second possible number as 3. This result is understandable, because among
the three components of the GMM from which the observations are generated, there are
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Fig. 3. Dataset 3: (a) original data points; (b) overall predictive density; (c) the contour of overall
predictive density; (d) the number of components vs. the number of sweeps.

two components, whose mean vectors are almost the same, and the observations that are
generated from these two components should be clustered into one large class.

In the second experiment, we ran our algorithms for 20,000 sweeps on it. The first
10,000 sweeps are considered as burn-in, and will be discarded. All our inferences are based
on the next 10,000 sweeps. This experiment uses two datasets, i.e., dataset 4 and dataset
5, of which one is from a 8-dimensional GMM and another is from a 4-dimensional GMM
(Table 1). In the dataset 4, the covariance matrix of each component is diagonal but has the
different diagonal elements, and in the dataset 5, the covariance matrix of each component
is a general positive definite matrix.

The estimated posterior probabilities of M are given in Table 2. We can see that our
simplified GMM is able to find the expected number of components for each of the two sets.
In Tables 3 and 4, we give the estimated mixing weights π, mean vectors µ’s and eigenvalues,
λm = (λm1, . . . , λmp)

T , of the covariance matrices, corresponding to the expected number
of components for each mixture. Since each component in a GMM represents one class
and the mixing weight of component represents the prior probability of the corresponding
class, the mixing weight implies the percentage of the number of observations belonging to
the class out of the total number of observations. Therefore the mixing weights can tell
us the accuracy of clustering or classification. For these two GMMs, the number of the
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Table 3. The estimated mixing weights π, means µ and eigenvalues λ of the covariance
matrices for our used dataset 4 when M = 10.

π1 = 0.1248, π2 = 0.0628, π3 = 0.0629, π4 = 0.1250, π5 = 0.0630
π6 = 0.1248, π7 = 0.1247, π8 = 0.0625, π9 = 0.1250, π10 = 0.1245

µT1 = (-20.12 2.84 -20.27 20.02 -10.24 4.79 11.14 14.97)
µT2 = (-15.02 -1.94 9.66 -15.01 -0.25 -8.46 8.48 11.56)
µT3 = (-14.08 8.38 -2.86 1.21 -3.76 -9.02 8.87 7.73)
µT4 = ( -9.85 -7.07 -0.23 -9.91 3.09 -5.12 3.24 5.32)
µT5 = ( 9.75 -11.59 4.57 0.36 6.32 7.47 -3.02 5.03)
µT6 = ( 14.71 -3.94 -15.13 14.78 7.92 20.04 1.50 11.84)
µT7 = ( 24.23 21.10 -4.99 5.25 -3.02 9.76 -8.66 -2.90)
µT8 = ( 35.33 -22.30 30.28 -25.08 9.30 -8.00 17.94 3.08)
µT9 = ( 39.98 -29.88 35.13 5.17 -22.04 9.89 21.90 -0.98)
µT10 = ( 60.01 -9.32 15.34 -5.15 -12.05 0.25 12.17 -2.24)

λT1 = ( 3.23 6.50 1.96 3.13 5.60 2.08 1.61 3.13)
λT2 = ( 8.31 3.63 3.16 2.40 4.35 8.27 5.71 1.86)
λT3 = ( 7.44 3.66 4.22 3.41 4.60 6.86 7.85 1.70)
λT4 = ( 3.20 7.90 3.76 2.35 2.54 1.21 4.72 4.10)
λT5 = ( 8.78 2.87 5.22 1.72 3.21 2.66 9.69 0.80)
λT6 = ( 5.17 5.98 0.96 7.86 1.10 4.97 7.74 1.89)
λT7 = ( 4.48 1.87 3.98 3.78 1.02 4.50 3.53 2.46)
λT8 = (12.54 3.96 2.16 1.32 11.80 7.36 0.99 2.08)
λT9 = ( 2.30 1.48 2.18 12.56 4.42 14.54 5.87 1.32)
λT10 = ( 2.05 8.58 2.19 3.30 3.76 2.95 5.62 8.79)

Table 4. The estimated mixing weights π, means µ and eigenvalues λ of the covariance matrices for
our used dataset 5 when M = 3..

π1 = 0.3992 π2 = 0.3007 π3 = 0.3001

µT1 = (-0.96, 5.04, -3.09, 3.96) µT2 = (3.98, 9.90, 5.83, 6.59) µT3 = (6.99, 14.98, 10.98, 9.96)

λT1 = (1.12, 1.32, 1.39, 2.25) λT2 =(1.68, 2.17, 1.16, 1.61) λT3 = (1.44, 0.94, 1.12, 1.79)

generated observations from each class is somewhat different, we still obtain the matched
mixing weights. This shows that our model works well for clustering with unknown number
of classes.

For the dataset 4, the covariance matrices are all diagonal, so the corresponding eigenvec-
tor matrices are the same (i.e., equal to the identity matrix). Thus this dataset is generated
from our considered mixture model. Clearly, the dataset 5 is generated from the general
mixture model. Our results demonstrate the our considered model for it still works well in
both parameter estimation and model selection.

It is well-known that Gibbs sampler simulations could encounter trapping states and the
so-called label switching (Redner and Walker, 1984) could occur because of symmetry in the
likelihood of the model parameters, when dealing with mixture models. Since our algorithm
is a generalization of the algorithm by Richardson and Green (1997) to multivariate setting,
the methods proposed by Richardson and Green (1997) that deal with this problems can be
also used for our algorithm. Similarly to the method suggested by Richardson and Green
(1997), here we impose an identifiability constraint on the parameter space such as the or-
derings of the mixing weights and the mean vectors. In the above experiments, we order the
mean vectors alphabetically to handle the label switching problem. Here the alphabetical
order between two n−dimensional vectors x = [x1, . . . , xn]

T and y = [y1, . . . , yn]
T is defined
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as x > y iff there exists a k < n such that xi = yi(i = 1, . . . , k) and xk+1 > yk+1. It is
worthy to note that for the label switching problem, some sophisticated methods, based on
the decision theory, are proposed by Celeux et al. (2000) and Stephens (2000b).

6. Concluding Remarks

This paper shows that it is possible to use the reversible jump MCMC methodology for fully
Bayesian analysis of multivariate GMMs. Following the constraints of preserving the first
second moments before and after the split or combine moves, we applied the reversible jump
MCMC algorithm to a simplified multivariate GMM, where the eigenvalue matrices of all
covariance matrices are the same. This simplified GMM is one of the most representative
model among GMMs, because firstly a GMM with diagonal covariance matrices, which is
widely used in classification, clustering or density function estimation, is a special case of our
simplified model. Secondly, using our simplified model can still obtain very good estimates
on general GMMs, especially on their model selection. Our experiments demonstrated this
point.

As discussed in fully Bayesian analysis for univariate hidden Markov models by Robert
et al. (2000), we can consider the split move as two independent subsplit moves, which
respectively involve transition probability matrices and component parameters. Moreover,
the Jacobian determinant of the total split moves is the product of the subdeterminants
corresponding to these two subsplit moves. Making use of the subsplit move for transition
matrices by Robert et al.(2000) and the subsplit move for component parameters in this
paper, we can immediately present a methodology of fully Bayesian inference in multivariate
hidden Markov models. In a recent article (Zhang et al., 2003), a split method that satisfies
the split equations (7), (8) and (9) for an arbitrary-structure covariance matrix has been
presented. However, since the numbers of free parameters before and after the split are
different, it is hard to use this method to devise a reversible jump for general GMMs.
Nevertheless, we think that this parameter-driven method can be introduced into the VB
framework, giving rise to an efficient on-line model selection method.

A. The Calculation of the Jacobian Matrix

Denote s′ =
{
πj′ , πk′ ,µj′ ,µk′ ,gj′ ,gk′

}
, and s = {πk, α,µk,u,gk,b}, where u = (u1, . . . , up)

T ,

gj′ = (λj′1, . . . , λj′p)
T , gk′ = (λk′1, . . . , λk′p)

T , gk = (λk1, . . . , λkp)
T and b = (β1, . . . , βp)

T .
Then the transformation defined by (13), (14) and (15) is from {πk, α,µk,u,gk,b} to{
πj′ , πk′ ,µj′ ,µk′ ,gj′ ,gk′

}
, and the corresponding Jacobian matrix J is:

J =




∂πj′

∂πk

∂πj′

∂α

∂πj′

∂µ
k

∂πj′

∂u

∂πj′
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k
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∂u
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∂gk

∂gk′
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. (A1)
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From (13), (14) and (15), we can calculate the partial derivatives:

∂πj′

∂πk
= α,

∂πj′

∂α
= πk,

∂πj′

∂µk
= 01×p,

∂πj′

∂u
= 01×p,

∂πj′

∂gk
= 01×p,

∂πj′

∂u
= 01×p, (A2)

∂πk′

∂πk
= 1− α,

∂πk′

∂α
= −πk,

∂πk′

∂µk
= 01×p,

∂πk′

∂u
= 01×p,

∂πk′

∂gk
= 01×p,

∂πkj′

∂u
= 01×p, (A3)

∂µj′

∂πk
= 0p×1,

∂µj′

∂α
= 0p×1,

∂µj′

∂b
= 0p×p;

∂µk′

∂πk
= 0p×1,

∂µk′

∂α
= 0p×1,

∂µk′

∂b
= 0p×p, (A4)

∂gj′

∂πk
= 0p×1,

∂gj′

∂α
= 0p×1,

∂gj′

∂µk
= 0p×p;

∂gk′

∂πk
= 0p×1,

∂gk′

∂α
= 0p×1,

∂gk′

∂µk
= 0p×p, (A5)

and, for (n = 1, . . . , p)

∂µ
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So, we have
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(A7)
Substituting (A2)-(A7) into (A1), we obtain (16).

B. The Calculation of the Jacobian Determinant

From the Jacobian matrix defined by (16), we immediately have

det(J) = πk · det(J1), (B1)

where

J1 =
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We partition J1 into J1 =

[
J11 J12

J21 J22

]
, where
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]
.

According to theorem in (Golub and Van Loan, 1996; Anderson, 1984), we can have:

det(J1) = det(J11) · det(J22 − J21J
−1
11 J12). (B3)

Through some arithmetic calculations, it is easily to obtain
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Here we use the property that the eigenvector matrix A is orthogonal matrix and its deter-
minant is one. Using simple matrix operations, we have

J21J
−1
11 J12 =

[
− πk

πj′
BU2 0p×p

− πk

πk′
(I−B)U2 0p×p

]
,

J22 − J21J
−1
11 J12 =

[
πk

πj′
B πk

πj′
Λk(I−U2)

πk

πk′
(I−B) − πk

πk′
Λk(I−U2)

]
.

Thus,

det
(
J22 − J21J

−1
11 J12

)

= det(
πk
πj′
B) det

(
− πk

πk′

Λk(I−U2)− πk
πk′

(I−B)πj′
πk
B−1 πk

πj′
Λk(I−U2)

)

= (−1)p
(

π2
k

πj′πk′

)p p∏

n=1

(1− u2
n)λkn.

Substituting the above equation and (B4) into (B3), and then into (B1), we obtain (17).
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