Probabilistic Fitting

• Generative probabilistic model
 – Tells a story about how stochastic data comes to be
 – Darts fall around the center of the board, but where exactly?
 – Consider a model with parameters, \(\theta \)
 – Consider an observation, \(x_i \)
 – We denote the probability of seeing \(x_i \) under the model by:

\[
p(x_i | \theta)
\]

Read “given” or “conditioned on”
Restricts to the case of \(\theta \)
Defined by \(p(A | B) = \frac{p(A,B)}{p(B)} \)

Probabilistic Fitting

• Multiple observations
 – Suppose we have multiple observations, in a vector \(x \)
 – What is the probability of \(x \)?

• If observations are independent then probability is the product of the individual observations
 – Essentially a definition, but is consistent with intuition
 – The observations are conditionally independent given the model

• So, the probability of \(x \) is then:

\[
p(x | \theta) = \prod p(x_i | \theta)
\]

Probabilistic Fitting

• So, given the model, we have the probability of observing the data

\[
p(x | \theta) = \prod p(x_i | \theta)
\]

• But what we really want is the probability of the model (parameters) given the data!

• Bayes rule comes to the rescue!