Organizational Comments

We have a maillist --- please join ASAP.

Reading for next week now on the schedule

Vote for whether we insist on having presentations on-line.

Tuesday we start regular format.

Turnin keys are now set to cs645_NN where NN is the number of the
day in the course that the response is for (schedule tells you the key).

— To hand in a response file for day 04 (next Tuesday), sign onto the
machine “lectura” and do:

¢ turnin cs645_04 response.txt
A few additional comments.

— Most engagement with the technical material will be through self-study of
the reading.
— You need to engage with it seriously, but however it works for you.

Probabilistic Fitting

* Given the model, we have the probability of observing the

data
p(D1©)=]]rd 10)

* But what we really want is the probability of the model
(parameters) given the data!

* Bayes rule comes to the rescue!

P(DI®)P(O)

: P®ID)=
Bayes rule: ( ) P(D)

Proof P(D,0)=P(DIO)P(O)=POI|D)P(D)

likelihood function

for the parameters prior probability (often
taken to be uniform)

/

P(D1©)P(O)
P(D)

P(OID)=

posterior probability normalizer, often is
not of interest

Common special case

P(®1D)= P(D10©)

Know the words in red




Probabilistic Fitting

 If we assume uniform prior, then we can find the posterior
density for the parameters by:

p(©1D) < p(D10O)

* Now the objective is to find the parameters © such that this
likelihood is maximum

Example One

D= ((xl,y]), (xz,yz), (x3,y3), (x",yn)) is dart locations.
0= (xH, yB) is the board center. Darts are distributed normally
about the center, with covariance matrix ol.

Assuming uniform prior, p(©1D)«< p(D1©)

We want to find the value of © that maximizes p(©1D).

Example Two

b

Case one, no error in X’s,
“regression,” like polynomials in
Bishop chapter one.

Case two, error in both x and y.

In both cases, p(D1©®)= Hp(di 10)

Probabilistic fitting with independence and uniform prior

Finding the “best” model under simple circumslances‘

maxébmize p(©1D) (one definition of best @)

max}bmize p(D10) (by Bayes rule, uniform prior)
minid{nize —log(p(D10®)) (log is monotonic increasing)

minimize  — log(H p(d, IG))) (by independence)

miniql)nize - Zlog( p(d; 19)) (high school math)




minimize L(D10) = - log(p(d, 10)) where ©=(x,,y;)

(1 (5303 ) = exp~{(x =5 + (=) )

For —log(p(d; | (qu"u ))) = (Xr —Xp )2 + (y, — Vs )2 +C
darts

L(DI@):Z(X, 7xb,)z +(y, 7y5)2

Minimize by taking derivatives with respect to x, and y,
(separately is OK) and setting them to zero. For x,, we get:

0= Fn-x)- [2 ]7 .

So, the ML solution is x, = l2‘,\:,
n-

* For lines (case two), use ax+by+c=0 where a’2+b"2=1

* Algebraic fact: Distance squared from (x,y) to this line is
(ax+by+c)A2

* Generative model for lines: Choose point on line, and
then, with probability proportional to p(d), normally
distributed (Gaussian), go a distance d from the line.

* Now the probability of an observed (x.y) is given by

(ax +by+c) )

p((x,y)10©) < exp(— 767
o

Lines Convenient formula for line

ax+by+c=0
where a’2+b72=1

dz - (axD +by[, +C)2 It tells us P(data | model)

This is the generative model

/

(ax, +by, +c)’

P((xp5y,)1©) o< exp(— Py )
o

We have the probability density of the observed (x,y) given by

(ax+by+c)?
P((x,)1©) o exp(—~ 2T
20

The negative log is

(ax+by+c)?
plon

And the negative log likelihood of multiple observations is

Z(ax,. +by, +c¢)*

i

20°




From the previous slide, we had that the negative log
likelihood of multiple observations is given by

FZ(‘”’ +by, +c)’ (where a® +b* =1)
This is known as homogeneous least squares which can be
solved using eigenvalues.




