
Organizational Comments

• We have a maillist --- please join ASAP.
• Reading for next week now on the schedule
• Vote for whether we insist on having presentations on-line.
• Tuesday we start regular format.
• Turnin keys are now set to cs645_NN where NN is the number of the

day in the course that the response is for (schedule tells you the key).
– To hand in a response file for day 04 (next Tuesday), sign onto the

machine “lectura” and do:
• turnin cs645_04 response.txt

• A few additional comments.
– Most engagement with the technical material will be through self-study of

the reading.
– You need to engage with it seriously, but however it works for you.

Probabilistic Fitting

• Given the model, we have the probability of observing the
data

• But what we really want is the probability of the model
(parameters) given the data!

• Bayes rule comes to the rescue!

p(D |!) = p(di" |!)

• Bayes rule:

• Proof

P(! | D) =
P(D |!)P(!)

P(D)

P(D,!) = P(D |!)P(!) = P(! | D)P(D)

P(! | D) =
P(D |!)P(!)

P(D)

prior probability (often
taken to be uniform)

normalizer, often is
not of interest

likelihood function
for the parameters

posterior probability

P(! | D)" P(D |!)

Common special case

Know the words in red



Probabilistic Fitting

• If we assume uniform prior, then we can find the posterior
density for the parameters by:

• Now the objective is to find the parameters Θ such that this
likelihood is maximum

p(! | D)" p(D |!)

Example One

D = x1, y1( ),! x2 , y2( ),! x3, y3( ),!!!!...!!! xn , yn( )( )   is dart locations.

! = x
B
, y

B( )!!is the board center. Darts are distributed normally 

about the center, with covariance matrix " I. 

Assuming uniform prior,  p ! | D( )# p D |!( )

We want to find the value of ! that maximizes p ! | D( ).

In both cases, p(D |!) = p(di" |!)

Example Two

Case one, no error in x’s,
“regression,” like polynomials in
Bishop chapter one.

Case two, error in both x and y.

maximize
!

 p(" | D)        (one definition of best ")

maximize
!

 p(D |")        (by Bayes rule, uniform prior)

minimize
!

   " log(p(D |#))     (log is monotonic increasing)

minimize
!

   " log p(di# |$)( )       (by independence)

minimize
!

   " log(p(di |#))$        (high school math)

Probabilistic fitting with independence and uniform prior

Finding the “best” model under simple circumstances



minimize
!

  L(D |")!=! # log(p(di |"))$          where   " = xB , yB( )

p(di | xB , yB( )) % exp # xi # xB( )
2
+ yi # yB( )

2( )( )

# log(p(di | xB , yB( ))) = xi # xB( )
2
+ yi # yB( )

2
+!C

L(D |") = xi # xB( )
2
+ yi # yB( )

2

i

$

Minimize by taking derivatives with respect to xB  and yB

(separately is OK) and setting them to zero. For xB  we get:

0!=! xi # xB( )!=!
i

$ xi !
i

$&'(
)
*+
#!n!

So,  the ML solution is  xB =!!
1

n
xi !

i

$

For
darts

• For lines (case two), use ax+by+c=0 where a^2+b^2=1

• Algebraic fact: Distance squared from (x,y) to this line is
(ax+by+c)^2

• Generative model for lines: Choose point on line, and
then, with probability proportional to p(d), normally
distributed (Gaussian), go a distance d from the line.

• Now the probability of an observed (x,y) is given by

p((x, y) |!)" exp(#
(ax + by + c)2

2$ 2
)

p((xD , yD ) |!)" exp(#
(axD + byD + c)2

2$ 2
)

Lines Convenient formula for line
ax+by+c=0
where  a^2+b^2=1

This is the generative model
It tells us P(data | model)

� 

d
2

= axD + byD + c( )
2

� 

xD , yD( )

We have the probability density of the observed (x,y) given by

The negative log is

And the negative log likelihood of multiple observations is

p((x, y) |!)" exp(#
(ax + by + c)2

2$ 2
)

� 

(ax + by + c)
2

2!
2

� 

1

2!
2

(axi + byi + c)
2

i

"



From the previous slide, we had that the negative log
likelihood of multiple observations is given by

This is known as homogeneous least squares which can be
solved using eigenvalues.� 

1

2!
2

(axi + byi + c)
2

(where a
2

+ b
2

i

" = 1)


