Organizational Comments

- We have a maillist --- please join ASAP.
- Reading for next week now on the schedule
- Vote for whether we insist on having presentations on-line
- Tuesday we start regular format.
- Turnin keys are now set to cs645_NN where NN is the number of the day in the course that the response is for (schedule tells you the key).
- To hand in a response file for day 04 (next Tuesday), sign onto the machine "lectura" and do:
- turnin cs645_04 response.tx
- A few additional comments.

Most engagement with the technical material will be through self-study of the reading
You need to engage with it seriously, but however it works for you

- Bayes rule: $\quad P(\Theta \mid D)=\frac{P(D \mid \Theta) P(\Theta)}{P(D)}$
- Proof $P(D, \Theta)=P(D \mid \Theta) P(\Theta)=P(\Theta \mid D) P(D)$

Probabilistic Fitting

- Given the model, we have the probability of observing the data

$$
p(D \mid \Theta)=\prod p\left(d_{i} \mid \Theta\right)
$$

- But what we really want is the probability of the model (parameters) given the data!
- Bayes rule comes to the rescue!

Probabilistic Fitting

- If we assume uniform prior, then we can find the posterior density for the parameters by:

$$
p(\Theta \mid D) \propto p(D \mid \Theta)
$$

- Now the objective is to find the parameters Θ such that this likelihood is maximum

Example One

$D=\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots\left(x_{n}, y_{n}\right)\right)$ is dart locations.
$\Theta=\left(x_{B}, y_{B}\right)$ is the board center. Darts are distributed normally about the center, with covariance matrix σ I.

Assuming uniform prior, $p(\Theta \mid D) \propto p(D \mid \Theta)$

We want to find the value of Θ that maximizes $p(\Theta \mid D)$.

Probabilistic fitting with independence and uniform prior

Finding the "best" model under simple circumstances
$\underset{\Phi}{\operatorname{maximize}} \mathrm{p}(\Theta \mid D) \quad$ (one definition of best Θ)
$\underset{\Phi}{\operatorname{maximize}} \mathrm{p}(D \mid \Theta) \quad$ (by Bayes rule, uniform prior)
$\underset{\Phi}{\operatorname{minimize}} \quad-\log (\mathrm{p}(D \mid \Theta)) \quad$ (log is monotonic increasing)
$\underset{\Phi}{\operatorname{minimize}} \quad-\log \left(\prod p\left(d_{i} \mid \Theta\right)\right) \quad$ (by independence)
$\underset{\Phi}{\operatorname{minimize}}-\sum \log \left(p\left(d_{i} \mid \Theta\right)\right) \quad$ (high school math)

For darts	$\underset{\sim}{\operatorname{minimize}} L(D \mid \Theta)=-\sum \log \left(p\left(d_{i} \mid \Theta\right)\right) \quad$ where $\Theta=\left(x_{s}, y_{s}\right)$
	$\mathrm{p}\left(d_{i} \mid\left(x_{B}, y_{B}\right)\right) \propto \exp \left(-\left(\left(x_{i}-x_{B}\right)^{2}+\left(y_{i}-y_{B}\right)^{2}\right)\right)$
	$-\log \left(p\left(d_{i} 1\left(x_{B}, y_{B}\right)\right)\right)=\left(x_{i}-x_{B}\right)^{2}+\left(y_{i}-y_{B}\right)^{2}+C$
	$L(D \mid \Theta)=\sum\left(x_{i}-x_{B}\right)^{2}+\left(y_{i}-y_{B}\right)^{2}$
	Minimize by taking derivatives with respect to x_{B} and y_{B} (separately is OK) and setting them to zero. For x_{B} we get:
	$0=\sum_{i}\left(x_{i}-x_{B}\right)=\left(\sum_{i} x_{i}\right)-n$
	So, the ML solution is $x_{B}=\frac{1}{n} \sum x_{i}$

- For lines (case two), use $a x+b y+c=0$ where $a^{\wedge} 2+b^{\wedge} 2=1$
- Algebraic fact: Distance squared from (x,y) to this line is $(a x+b y+c)^{\wedge} 2$
- Generative model for lines: Choose point on line, and then, with probability proportional to $\mathrm{p}(\mathrm{d})$, normally distributed (Gaussian), go a distance d from the line
- Now the probability of an observed (x, y) is given by

$$
p((x, y) \mid \Theta) \propto \exp \left(-\frac{(a x+b y+c)^{2}}{2 \sigma^{2}}\right)
$$

We have the probability density of the observed (x, y) given by

$$
p((x, y) \mid \Theta) \propto \exp \left(-\frac{(a x+b y+c)^{2}}{2 \sigma^{2}}\right)
$$

The negative \log is

$$
\frac{(a x+b y+c)^{2}}{2 \sigma^{2}}
$$

And the negative log likelihood of multiple observations is

$$
\frac{1}{2 \sigma^{2}} \sum_{i}\left(a x_{i}+b y_{i}+c\right)^{2}
$$

From the previous slide, we had that the negative \log likelihood of multiple observations is given by
$\frac{1}{2 \sigma^{2}} \sum_{i}\left(a x_{i}+b y_{i}+c\right)^{2} \quad\left(\right.$ where $\left.\mathrm{a}^{2}+\mathrm{b}^{2}=1\right)$

This is known as homogeneous least squares which can be solved using eigenvalues.

