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Factorization

Given a graph with nodes x1, . . . , xD, the corresponding joint
density is given by

px(x) =
1
Z

∏
C

ψC(xC),

where x = (x1, . . . , xD)T and ψC are functions over the maximal
cliques of the graph, called potential functions.
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Potential Functions

What are pontential functions? They are functions

ψC : R|C| → R,

where |C| is the number of nodes in the maximal clique C.
They represent some relationship between adjacent nodes
(random variables) in the graph.
They need not have a probabilistic interpretation. In image
de-noising example, potential functions represented
correlation between nodes of (two-node) cliques.
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Conditional Independence

In a MRF, conditional independence is simpler: if all paths
between node a and b pass through c, then a ⊥⊥ b | c. For
example, in the following graph, it is true that A ⊥⊥ B | C.
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Directed→ undirected

For every node x
Add links between all parent nodes
Drop arrows
Set

ψx ,pax
(x ,pax) = p(x |pax)

∏
y∈pax

p(y)

Note that this process loses information about independence:
in the directed graph, the parents of x were independent of
each other and, in the undirected graph, they are not.

Ernesto Brau Graphical Models



Markov Random Fields
Inference in Graphical Models

Summary

Factorization
Relation to directed graphs
Thoughts

Thoughts on undirected graphs

It seems (to me) that – because of the “fuzziness” of the
potential functions – there are two ways of getting an
undirected graph:

(i) generate it from a directed graph.
(ii) generate it from a model that has a natural graphical

representation (e.g. the image de-noising).
In contrast, directed graphs have a very precise probabilitic
interpretation and can always be generated from models.
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Using independence

Let x , y and z be discrete random variables that take on five
values.

In general, p(x , y , z) is a 5× 5× 5 table of values
If x , y and z are independent, p(x , y , z) = p(x)p(y)p(z);
the joint is determined by the marginals

This basic principle will be used to speed up calculations of
marginals and conditional marginals (like posteriors).
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Chains

A chain is a graph of the form

and its joint distribution is given by

p(x) = ψ1,2(x1, x2) · · ·ψN−1,N(xN−1, xN),

where ψ1,2(x1, x2) = p(x1)p(x2|x1) and

ψk−1,k (xk−1, xk ) = p(xk |xk−1), for k = 3, . . . ,N.
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Inference on chains

Given a chain of discrete random variables (with K possible
values for each), compute p(xn), given by

p(xn) =
∑
x1

· · ·
∑
xn−1

∑
xn+1

· · ·
∑
xN

p(x)

=
∑
x1

· · ·
∑
xn−1

∑
xn+1

· · ·
∑
xN

ψ(x1, x2) · · ·ψ(xN−1, xN).

Each xi can take on K possible values; sum over K N−1 values!

We can take advantage of independence properties
(xk+1 ⊥⊥ xk−1|xk ) to make this computation more efficient.
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Inference on chains

Consider the following:

p(xn) =
X

x1

· · ·
X
xn−1

X
xn+1

· · ·
X
xN

p(x)

=
X

x1

· · ·
X
xn−1

X
xn+1

· · ·
X
xN−1

h
ψ(x1, x2) · · ·ψ(xN−1, x1

N)

+ ψ(x1, x2) · · ·ψ(xN−1, x2
N)

...

+ ψ(x1, x2) · · ·ψ(xN−1, xK
N )

i
=

X
x1

· · ·
X
xn−1

X
xn+1

· · ·
X
xN−1

h
ψ(x1, x2) · · ·ψ(xN−2, xN−1)

X
xN

ψ(xN−1, xN)
i
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Inference on chains

Applying this “trick” repeatedly, and realizing that we can
separate into two parts, we get that

p(xn) =
[∑

xn−1

ψ(xn−1, xn) · · ·
[∑

x1

ψ(x1, x2)
]
· · ·

]
[∑

xn+1

ψ(xn, xn+1) · · ·
[∑

xN

ψ(xN−1, xN)
]
· · ·

]
.

Computation reduced to O(NK 2).
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Factor Graphs

Express joint density using “factors”:

p(x) =
∏

s

fs(xs)

Factor graphs:
Square nodes for “factors”
Links between factor nodes and variable nodes used in
factor
Can convert between directed/undirected graphs to factor
graphs
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Example

Consider p(x) = p(x1)p(x2)p(x3|x1, x2), with directed graph

Let fa(x1) = p(x1), fb(x2) = p(x2), fc(x1, x2, x3) = p(x3|x1, x2);
the corresponding factor graph is
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Undirected graphs give a lot of flexibility; but not always
applicable.
Conditional independence is important! Taking advantage
of it speeds up computation.
Discuss!!
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