Graphical Models

Ernesto Brau

Dept. of Computer Science
University of Arizona

27 Jan 2009

Outline

(1) Markov Random Fields

- Factorization
- Relation to directed graphs
- Thoughts
(2) Inference in Graphical Models
- Introduction
- Inference on a chain
- Factor graphs

Factorization

Given a graph with nodes x_{1}, \ldots, x_{D}, the corresponding joint density is given by

$$
p_{\mathbf{x}}(\mathbf{x})=\frac{1}{Z} \prod_{C} \psi_{C}\left(\mathbf{x}_{C}\right)
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)^{\top}$ and ψ_{C} are functions over the maximal cliques of the graph, called potential functions.

Potential Functions

- What are pontential functions? They are functions

$$
\psi_{C}: \mathbb{R}^{|C|} \rightarrow \mathbb{R}
$$

where $|C|$ is the number of nodes in the maximal clique C.

- They represent some relationship between adjacent nodes (random variables) in the graph.
- They need not have a probabilistic interpretation. In image de-noising example, potential functions represented correlation between nodes of (two-node) cliques.

Conditional Independence

In a MRF, conditional independence is simpler: if all paths between node a and b pass through c, then $a \Perp b \mid c$. For example, in the following graph, it is true that $A \Perp B \mid C$.

Directed \rightarrow undirected

For every node x

- Add links between all parent nodes
- Drop arrows
- Set

$$
\psi_{x, \mathrm{pa}_{x}}\left(x, \mathrm{pa}_{x}\right)=p\left(x \mid \mathrm{pa}_{x}\right) \prod_{y \in \mathrm{pa}_{x}} p(y)
$$

Note that this process loses information about independence: in the directed graph, the parents of x were independent of each other and, in the undirected graph, they are not.

Thoughts on undirected graphs

It seems (to me) that - because of the "fuzziness" of the potential functions - there are two ways of getting an undirected graph:
(i) generate it from a directed graph.
(ii) generate it from a model that has a natural graphical representation (e.g. the image de-noising).
In contrast, directed graphs have a very precise probabilitic interpretation and can always be generated from models.

Using independence

Let x, y and z be discrete random variables that take on five values.

- In general, $p(x, y, z)$ is a $5 \times 5 \times 5$ table of values
- If x, y and z are independent, $p(x, y, z)=p(x) p(y) p(z)$; the joint is determined by the marginals
This basic principle will be used to speed up calculations of marginals and conditional marginals (like posteriors).

Chains

A chain is a graph of the form

and its joint distribution is given by

$$
p(\mathbf{x})=\psi_{1,2}\left(x_{1}, x_{2}\right) \cdots \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)
$$

where $\psi_{1,2}\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)$ and

$$
\psi_{k-1, k}\left(x_{k-1}, x_{k}\right)=p\left(x_{k} \mid x_{k-1}\right), \quad \text { for } k=3, \ldots, N
$$

Inference on chains

Given a chain of discrete random variables (with K possible values for each), compute $p\left(x_{n}\right)$, given by

$$
\begin{aligned}
p\left(x_{n}\right) & =\sum_{x_{1}} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_{N}} p(\mathbf{x}) \\
& =\sum_{x_{1}} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_{N}} \psi\left(x_{1}, x_{2}\right) \cdots \psi\left(x_{N-1}, x_{N}\right) .
\end{aligned}
$$

Each x_{i} can take on K possible values; sum over K^{N-1} values!
We can take advantage of independence properties ($x_{k+1} \Perp x_{k-1} \mid x_{k}$) to make this computation more efficient.

Inference on chains

Consider the following:

$$
\begin{aligned}
p\left(x_{n}\right)= & \sum_{x_{1}} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_{N}} p(\mathbf{x}) \\
=\sum_{x_{1}} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_{N-1}} & {\left[\psi\left(x_{1}, x_{2}\right) \cdots \psi\left(x_{N-1}, x_{N}^{1}\right)\right.} \\
& +\psi\left(x_{1}, x_{2}\right) \cdots \psi\left(x_{N-1}, x_{N}^{2}\right) \\
& \vdots \\
& \left.+\psi\left(x_{1}, x_{2}\right) \cdots \psi\left(x_{N-1}, x_{N}^{K}\right)\right] \\
= & \sum_{x_{1}} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_{N-1}}\left[\psi\left(x_{1}, x_{2}\right) \cdots \psi\left(x_{N-2}, x_{N-1}\right) \sum_{x_{N}} \psi\left(x_{N-1}, x_{N}\right)\right]
\end{aligned}
$$

Inference on chains

Applying this "trick" repeatedly, and realizing that we can separate into two parts, we get that

$$
\begin{aligned}
p\left(x_{n}\right)= & {\left[\sum_{x_{n-1}} \psi\left(x_{n-1}, x_{n}\right) \cdots\left[\sum_{x_{1}} \psi\left(x_{1}, x_{2}\right)\right] \cdots\right] } \\
& {\left[\sum_{x_{n+1}} \psi\left(x_{n}, x_{n+1}\right) \cdots\left[\sum_{x_{N}} \psi\left(x_{N-1}, x_{N}\right)\right] \cdots\right] . }
\end{aligned}
$$

Computation reduced to $O\left(N K^{2}\right)$.

Factor Graphs

Express joint density using "factors":

$$
p(\mathbf{x})=\prod_{s} f_{s}\left(\mathbf{x}_{s}\right)
$$

Factor graphs:

- Square nodes for "factors"
- Links between factor nodes and variable nodes used in factor
- Can convert between directed/undirected graphs to factor graphs

Example

Consider $p(\mathbf{x})=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)$, with directed graph

Let $f_{a}\left(x_{1}\right)=p\left(x_{1}\right), f_{b}\left(x_{2}\right)=p\left(x_{2}\right), f_{c}\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{3} \mid x_{1}, x_{2}\right)$; the corresponding factor graph is

Summary

- Undirected graphs give a lot of flexibility; but not always applicable.
- Conditional independence is important! Taking advantage of it speeds up computation.
- Discuss!!

