Sum-Product, Max-Sum and Beyond

Bishop §8.4.4-§8.4.8

Andrew Predoehl

29 January 2009

Outline

(9) The sum-product algorithm

- Essentials
- Simple Example
- General formulation
(2) The max-sum algorithm
- Essential idea
- Implementation
(3) Beyond sum-product and max-sum

Essentials

Outline

(9) The sum-product algorithm

- Essentials
- Simple Example
- General formulation
(2) The max-sum algorithm
- Essential idea
- Implementation
(3) Beyond sum-product and max-sum
$\mathbb{A}^{\mathbb{A}}$

Purpose

The sum-product algorithm lets us do exact inference on factor graphs that are trees.

- "Exact inference" means that we can marginalize any of the variables in the model, i.e., compute $p\left(x_{5}\right)$ from $p(\mathbf{x})$.
- "Tree" means the graph has no cycles (which Bishop calls loops).

Input and Outputs

Input: a factor graph and all the relevant factors
Output: any or all desired marginals

$$
\mathrm{p}(\mathrm{x} 1)
$$

$$
\mathrm{p}(\mathrm{x} 2)
$$

$$
\mathrm{p}(\mathrm{x} 3)
$$

$$
p(x 4)
$$

$$
p(x 5)
$$

$$
p(x 6)
$$

$$
\mathrm{p}(\mathrm{x} 7)
$$

$$
\begin{aligned}
& \mathrm{fa}(\mathrm{x} 1), \mathrm{fb}(\mathrm{x} 2), \mathrm{fc}(\mathrm{x} 3) \\
& \mathrm{fd}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4), \mathrm{fe}(\mathrm{x} 1, \mathrm{x} 3, \mathrm{x} 5) \\
& \mathrm{fg}(\mathrm{x} 4, \mathrm{x} 6), \mathrm{fh}(\mathrm{x} 4, \mathrm{x} 5, \mathrm{x} 7)
\end{aligned}
$$

Outline

(9) The sum-product algorithm

- Essentials
- Simple Example
- General formulation
(2) The max-sum algorithm
- Essential idea
- Implementation
(3) Beyond sum-product and max-sum

Key Fact

The algorithm is efficient because the tree topology lets us interchange sums and products. Example: Fig. 8.51 (p. 409)

Ignoring normalization, the joint probability is
$p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{a}\left(x_{1}, x_{2}\right) \cdot f_{b}\left(x_{2}, x_{3}\right) \cdot f_{c}\left(x_{2}, x_{4}\right)$

For instance, to find $p\left(x_{2}\right)$ we must marginalize over the other variables. This easily becomes a product of sums:

$$
\begin{align*}
p\left(x_{2}\right) & =\sum_{x_{1}, x_{3}, x_{4}} p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \tag{1}\\
& =\sum_{x_{4}}\left(\sum_{x_{3}}\left(\sum_{x_{1}}\left(f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{2}, x_{3}\right) f_{c}\left(x_{2}, x_{4}\right)\right)\right)\right) \tag{2}\\
& \left.=\sum_{x_{4}}\left(\sum_{x_{3}}\left(\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right)\right) f_{b}\left(x_{2}, x_{3}\right) \cdot f_{c}\left(x_{2}, x_{4}\right)\right)\right) \tag{3}\\
& \left.=\left(\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right)\right) \sum_{x_{4}}\left(\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right) \cdot f_{c}\left(x_{2}, x_{4}\right)\right)\right) \tag{4}\\
& \vdots \\
& =\left(\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right)\right)\left(\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right)\right)\left(\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right)\right) \tag{5}
\end{align*}
$$

Messages

So we see a nested sum of products becomes a sequential product of N sums. Time: $O\left(N K^{c}\right)$ instead of $O\left(K^{N}\right)$. The result may be thought of as a product of messages.

$$
\begin{align*}
p\left(x_{2}\right) & =\left(\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right)\right)\left(\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right)\right)\left(\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right)\right) \\
& =\left(\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right)\right)\left(\mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right)\right)\left(\mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)\right) \tag{6}
\end{align*}
$$

Each message represents how the marginalized variables influence the distribution of the desired variable.

Outline

(9) The sum-product algorithm

- Essentials
- Simple Example
- General formulation
(2) The max-sum algorithm
- Essential idea
- Implementation
(3) Beyond sum-product and max-sum

Does this trick always work?

Any factor graph that is a tree can use this trick at every node.

Why? Because of disjoint blobs: every factor in just one blob.

Likewise, each $f \rightarrow x$ message can be factored:

We call these factors the messages from variable to factor node

$$
\begin{align*}
\mu_{f_{b} \rightarrow x_{2}} & =\sum_{x_{21}} \sum_{x_{22}} \sum_{x_{23}} f_{b}\left(x_{2}, x_{21}, x_{22}, x_{23}\right) \prod_{\text {etc. }}\left(\sum_{\text {etc. }} f(\ldots)\right) \\
& =\sum_{x_{21}} \sum_{x_{22}} \sum_{x_{23}} f_{b}\left(x_{2}, x_{21}, x_{22}, x_{23}\right) \prod_{\text {etc. }}\left(\mu_{x_{k} \rightarrow f_{b}}\right)(\tag{11}
\end{align*}
$$

So to compute a single marginal $p(x)$

- Start at the leaves of the tree (considering x as root)
- Compute messages going towards x, using (6) \& (11)

So to compute a single marginal $p(x)$

- Start at the leaves of the tree (considering x as root)
- Compute messages going towards x, using (6) \& (11)

To compute all the marginals, for each edge in the graph,

- Cache the messages going towards x
- Then compute (and cache) all messages in the opposite direction

So to compute a single marginal $p(x)$

- Start at the leaves of the tree (considering x as root)
- Compute messages going towards x, using (6) \& (11)

To compute all the marginals, for each edge in the graph,

- Cache the messages going towards x
- Then compute (and cache) all messages in the opposite direction
Need normalization? Use $p(x)$ or any other marginal.

Outline

(1) The sum-product algorithm

- Essentials
- Simple Example
- General formulation
(2) The max-sum algorithm
- Essential idea
- Implementation
(3) Beyond sum-product and max-sum
- What if, instead of the marginals, we want the maximum likelihood setting of the variables, that is, the particular choice of $\mathbf{x}=\mathbf{x}_{M L}$ such that the joint $p\left(\mathbf{x}_{M L}\right)$ is maximized?
- What if, instead of the marginals, we want the maximum likelihood setting of the variables, that is, the particular choice of $\mathbf{x}=\mathbf{x}_{M L}$ such that the joint $p\left(\mathbf{x}_{M L}\right)$ is maximized?
- A surprisingly simple modification to sum-product can give us this information.
- The reason it works is that sum and maximum both allow factoring:

$$
\sum_{i=0}^{4} a(i-3)^{2}=a \sum_{i=0}^{4}(i-3)^{2}
$$

and likewise, if $a>0$,

$$
\max _{i \in\{0, \ldots, 4\}} a(i-3)^{2}=a\left(\max _{i \in\{0, \ldots, 4\}}(i-3)^{2}\right)
$$

Outline

(1) The sum-product algorithm

- Essentials
- Simple Example
- General formulation
(2) The max-sum algorithm
- Essential idea
- Implementation
(3) Beyond sum-product and max-sum
- We do message passing almost the same as before, replacing summations with max operations.
- So you might think of this algorithm as max-product; BUT,
- We do message passing almost the same as before, replacing summations with max operations.
- So you might think of this algorithm as max-product; BUT,
- As a practical matter, we would hit arithmetic underflow problems; so we use logarithms.
- Thus products of distributions become sums of log probabilities:

$$
f_{a}\left(x_{3}, x_{4}\right) \cdot f_{b}\left(x_{3}, x_{2}\right) \rightarrow \ln f_{a}\left(x_{3}, x_{4}\right)+\ln f_{b}\left(x_{3}, x_{2}\right)
$$

- The algorithm is therefore called max-sum.
- We do message passing almost the same as before, replacing summations with max operations.
- So you might think of this algorithm as max-product; BUT,
- As a practical matter, we would hit arithmetic underflow problems; so we use logarithms.
- Thus products of distributions become sums of log probabilities:

$$
f_{a}\left(x_{3}, x_{4}\right) \cdot f_{b}\left(x_{3}, x_{2}\right) \rightarrow \ln f_{a}\left(x_{3}, x_{4}\right)+\ln f_{b}\left(x_{3}, x_{2}\right)
$$

- The algorithm is therefore called max-sum.

In this manner we can easily find the maximum probability of the joint distribution, i.e.,

$$
p_{M L} \equiv \max _{\mathbf{x}} p(\mathbf{x})
$$

What about argmax?

- To find the arg max (the value $\mathbf{x}_{M L}$ at which $p\left(\mathbf{x}_{M L}\right)=p_{M L}$), we must perform some extra bookkeeping.

What about argmax?

- To find the arg max (the value $\mathbf{x}_{M L}$ at which $p\left(\mathbf{x}_{M L}\right)=p_{M L}$), we must perform some extra bookkeeping.
- Every time we perform a max operation we also store the settings of the adjacent variables that led to the maximum. (Not necessarily unique.)

What about argmax?

- To find the arg max (the value $\mathbf{x}_{M L}$ at which $p\left(\mathbf{x}_{M L}\right)=p_{M L}$), we must perform some extra bookkeeping.
- Every time we perform a max operation we also store the settings of the adjacent variables that led to the maximum. (Not necessarily unique.)
- Remember that messages are (in spirit) functions, not values! We need the max for every possible value of the variable.
- For discrete random variables taking one of K possible values, that means we need to store a table of K settings with each variable node, storing the childrens' settings for each value.

Max-sum bookkeeping (with fake numbers)

$$
\begin{aligned}
\mu_{\text {an }}\left(x_{n}\right) & =\max _{x_{m}}\left(\ln f_{a}\left(x_{n}, \ldots\right)+\mu_{m a}\right) \\
\mu_{b n}\left(x_{n}\right) & =\max _{x_{j}, x_{k}}\left(\ln f_{b}\left(x_{n}, \ldots\right)+\mu_{j b}+\mu_{k b}\right) \\
\mu_{n ?}\left(x_{n}\right) & =\mu_{a n}\left(x_{n}\right)+\mu_{b n}\left(x_{n}\right)
\end{aligned}
$$

Wrapping up exact inference

- Once we find the joint max probability, we then backtrack to find a set of variable settings that achieves this value.
- The Viterbi algorithm is a famous example of this: it finds the argmax for a chain of hidden variables.

Wrapping up exact inference

- Once we find the joint max probability, we then backtrack to find a set of variable settings that achieves this value.
- The Viterbi algorithm is a famous example of this: it finds the argmax for a chain of hidden variables.
- When some variables are observed, we can just substitute the observed value for the variable (eliminating a max operation).
- A similar idea applies for sum-product: fix each observed variable to its known value, eliminate a sum.

What do we do with non-tree factor graphs?

Non-tree graphs can be solved too, exactly or approximately:

- There's the junction tree algorithm which solves the problem.
- It sounds slow (exponential cost, p. 417).

What do we do with non-tree factor graphs?

Non-tree graphs can be solved too, exactly or approximately:

- There's the junction tree algorithm which solves the problem.
- It sounds slow (exponential cost, p. 417).

If approximate results are adequate, there are many approaches:

- Monte Carlo methods (a.k.a. Sampling): very important

What do we do with non-tree factor graphs?

Non-tree graphs can be solved too, exactly or approximately:

- There's the junction tree algorithm which solves the problem.
- It sounds slow (exponential cost, p. 417).

If approximate results are adequate, there are many approaches:

- Monte Carlo methods (a.k.a. Sampling): very important
- "Loopy Belief Propagation": use sum-product on the graph, and hope it converges.

Summary

- Sum-product lets you find marginal distribution of variables.
- Max-sum lets you find the ML variable settings.
- These algorithms require the factor graph to be a tree.
- If there are cycles in the factor graph, the problem is harder.

Discussion question:
What does it mean for a model to be a tree, compared to a non-tree model?

