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Purpose

The sum-product algorithm lets us do exact inference on factor
graphs that are trees.

“Exact inference” means that we can marginalize any of
the variables in the model, i.e., compute p(x5) from p(x).
“Tree” means the graph has no cycles (which Bishop calls
loops).
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Input and Outputs

Input: a factor graph and all the relevant factors
Output: any or all desired marginals

2 1 3

4 5

6 7

p(x1)

p(x2)

p(x3)

p(x4)

p(x5)

p(x6)

p(x7)

sum−product

fa(x1), fb(x2), fc(x3),

fd(x1,x2,x3,x4), fe(x1,x3,x5),

fg(x4,x6), fh(x4,x5,x7)
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Key Fact

The algorithm is efficient because the tree topology lets us
interchange sums and products. Example: Fig. 8.51 (p. 409)

Ignoring normalization, the joint probability is
p(x1, x2, x3, x4) = fa(x1, x2) · fb(x2, x3) · fc(x2, x4)
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For instance, to find p(x2) we must marginalize over the other
variables. This easily becomes a product of sums:

p(x2) =
∑

x1,x3,x4

p(x1, x2, x3, x4) (1)

=
∑
x4

(∑
x3

(∑
x1

(
fa(x1, x2)fb(x2, x3)fc(x2, x4)

)))
(2)

=
∑
x4

(∑
x3

(∑
x1

fa(x1, x2)
)

fb(x2, x3) · fc(x2, x4)
))

(3)

=
(∑

x1

fa(x1, x2)
)∑

x4

(∑
x3

fb(x2, x3) · fc(x2, x4)
))

(4)

...
=

(∑
x1

fa(x1, x2)
)(∑

x3

fb(x2, x3)
)(∑

x4

fc(x2, x4)
)

(5)
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Messages

So we see a nested sum of products becomes a sequential
product of N sums. Time: O(NK c) instead of O(K N). The
result may be thought of as a product of messages.

p(x2) =
(∑

x1

fa(x1, x2)
)(∑

x3

fb(x2, x3)
)(∑

x4

fc(x2, x4)
)

=
(
µfa→x2(x2)

)(
µfb→x2(x2)

)(
µfc→x2(x2)

)
(6)

Each message represents how the marginalized variables
influence the distribution of the desired variable.
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Does this trick always work?

Any factor graph that is a tree can use this trick at every node.

Why? Because of disjoint blobs: every factor in just one blob.

p(x2) =
∑
1,2,3

∏
1,2,3

fi() =
( ∑

blob1

∏
blob1

f ()
)( ∑

blob2

∏
blob2

f ()
)( ∑

blob3

∏
blob3

f ()
)
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Likewise, each f → x message can be factored:

µfb→x2 =
∑
blob2

∏
blob2

f (. . . ) (7)

=
∑
x21

∑
x22

∑
x23

∑
etc.

fb(x2, x21, x22, x23)
∏
etc.

f (. . . ) (8)

=
∑
x21

∑
x22

∑
x23

fb(x2, x21, x22, x23)
∑
etc.

∏
etc.

f (. . . ) (9)

=
∑
x21

∑
x22

∑
x23

fb(x2, x21, x22, x23)
∏
etc.

(∑
etc.

f (. . . )
)
(10)
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We call these factors the messages from variable to factor node

µfb→x2 =
∑
x21

∑
x22

∑
x23

fb(x2, x21, x22, x23)
∏
etc.

(∑
etc.

f (. . . )
)

=
∑
x21

∑
x22

∑
x23

fb(x2, x21, x22, x23)
∏
etc.

(
µxk→fb

)
(11)
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So to compute a single marginal p(x)

Start at the leaves of the tree (considering x as root)
Compute messages going towards x , using (6) & (11)

To compute all the marginals, for each edge in the graph,
Cache the messages going towards x
Then compute (and cache) all messages in the opposite
direction

Need normalization? Use p(x) or any other marginal.
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What if, instead of the marginals, we want the maximum
likelihood setting of the variables, that is, the particular
choice of x = xML such that the joint p(xML) is maximized?

A surprisingly simple modification to sum-product can give
us this information.
The reason it works is that sum and maximum both allow
factoring:

4∑
i=0

a(i − 3)2 = a
4∑

i=0

(i − 3)2

and likewise, if a > 0,

max
i∈{0,...,4}

a(i − 3)2 = a
(

max
i∈{0,...,4}

(i − 3)2
)
.
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We do message passing almost the same as before,
replacing summations with max operations.
So you might think of this algorithm as max-product; BUT,

As a practical matter, we would hit arithmetic underflow
problems; so we use logarithms.
Thus products of distributions become sums of log
probabilities:

fa(x3, x4) · fb(x3, x2) → ln fa(x3, x4) + ln fb(x3, x2)

The algorithm is therefore called max-sum.

In this manner we can easily find the maximum probability of
the joint distribution, i.e.,

pML ≡ max
x

p(x).
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What about argmax?

To find the arg max (the value xML at which p(xML) = pML),
we must perform some extra bookkeeping.

Every time we perform a max operation we also store the
settings of the adjacent variables that led to the maximum.
(Not necessarily unique.)
Remember that messages are (in spirit) functions, not
values! We need the max for every possible value of the
variable.
For discrete random variables taking one of K possible
values, that means we need to store a table of K settings
with each variable node, storing the childrens’ settings for
each value.
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Max-sum bookkeeping (with fake numbers)

µan(xn) = max
xm

(ln fa(xn, . . . ) + µma)

µbn(xn) = max
xj ,xk

(ln fb(xn, . . . ) + µjb + µkb)

µn?(xn) = µan(xn) + µbn(xn)
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Wrapping up exact inference

Once we find the joint max probability, we then backtrack
to find a set of variable settings that achieves this value.
The Viterbi algorithm is a famous example of this: it finds
the argmax for a chain of hidden variables.

When some variables are observed, we can just substitute
the observed value for the variable (eliminating a max
operation).
A similar idea applies for sum-product: fix each observed
variable to its known value, eliminate a sum.
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What do we do with non-tree factor graphs?

Non-tree graphs can be solved too, exactly or approximately:
There’s the junction tree algorithm which solves the
problem.
It sounds slow (exponential cost, p. 417).

If approximate results are adequate, there are many
approaches:

Monte Carlo methods (a.k.a. Sampling): very important
“Loopy Belief Propagation”: use sum-product on the graph,
and hope it converges.
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Summary

Sum-product lets you find marginal distribution of variables.
Max-sum lets you find the ML variable settings.
These algorithms require the factor graph to be a tree.
If there are cycles in the factor graph, the problem is
harder.

Discussion question:
What does it mean for a model to be a tree, compared to a
non-tree model?
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