
The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Sum-Product, Max-Sum
and Beyond

Bishop §8.4.4 - §8.4.8

Andrew Predoehl

29 January 2009

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Outline

1 The sum-product algorithm
Essentials
Simple Example
General formulation

2 The max-sum algorithm
Essential idea
Implementation

3 Beyond sum-product and max-sum

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essentials
Simple Example
General formulation

Outline

1 The sum-product algorithm
Essentials
Simple Example
General formulation

2 The max-sum algorithm
Essential idea
Implementation

3 Beyond sum-product and max-sum

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essentials
Simple Example
General formulation

Purpose

The sum-product algorithm lets us do exact inference on factor
graphs that are trees.

“Exact inference” means that we can marginalize any of
the variables in the model, i.e., compute p(x5) from p(x).
“Tree” means the graph has no cycles (which Bishop calls
loops).

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essentials
Simple Example
General formulation

Input and Outputs

Input: a factor graph and all the relevant factors
Output: any or all desired marginals

2 1 3

4 5

6 7

p(x1)

p(x2)

p(x3)

p(x4)

p(x5)

p(x6)

p(x7)

sum−product

fa(x1), fb(x2), fc(x3),

fd(x1,x2,x3,x4), fe(x1,x3,x5),

fg(x4,x6), fh(x4,x5,x7)
Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essentials
Simple Example
General formulation

Outline

1 The sum-product algorithm
Essentials
Simple Example
General formulation

2 The max-sum algorithm
Essential idea
Implementation

3 Beyond sum-product and max-sum

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essentials
Simple Example
General formulation

Key Fact

The algorithm is efficient because the tree topology lets us
interchange sums and products. Example: Fig. 8.51 (p. 409)

Ignoring normalization, the joint probability is
p(x1, x2, x3, x4) = fa(x1, x2) · fb(x2, x3) · fc(x2, x4)

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essentials
Simple Example
General formulation

For instance, to find p(x2) we must marginalize over the other
variables. This easily becomes a product of sums:

p(x2) =
∑

x1,x3,x4

p(x1, x2, x3, x4) (1)

=
∑
x4

(∑
x3

(∑
x1

(
fa(x1, x2)fb(x2, x3)fc(x2, x4)

)))
(2)

=
∑
x4

(∑
x3

(∑
x1

fa(x1, x2)
)

fb(x2, x3) · fc(x2, x4)
))

(3)

=
(∑

x1

fa(x1, x2)
)∑

x4

(∑
x3

fb(x2, x3) · fc(x2, x4)
))

(4)

...
=

(∑
x1

fa(x1, x2)
)(∑

x3

fb(x2, x3)
)(∑

x4

fc(x2, x4)
)

(5)

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essentials
Simple Example
General formulation

Messages

So we see a nested sum of products becomes a sequential
product of N sums. Time: O(NK c) instead of O(K N). The
result may be thought of as a product of messages.

p(x2) =
(∑

x1

fa(x1, x2)
)(∑

x3

fb(x2, x3)
)(∑

x4

fc(x2, x4)
)

=
(
µfa→x2(x2)

)(
µfb→x2(x2)

)(
µfc→x2(x2)

)
(6)

Each message represents how the marginalized variables
influence the distribution of the desired variable.

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essentials
Simple Example
General formulation

Outline

1 The sum-product algorithm
Essentials
Simple Example
General formulation

2 The max-sum algorithm
Essential idea
Implementation

3 Beyond sum-product and max-sum

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essentials
Simple Example
General formulation

Does this trick always work?

Any factor graph that is a tree can use this trick at every node.

Why? Because of disjoint blobs: every factor in just one blob.

p(x2) =
∑
1,2,3

∏
1,2,3

fi() =
(∑

blob1

∏
blob1

f ()
)(∑

blob2

∏
blob2

f ()
)(∑

blob3

∏
blob3

f ()
)

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essentials
Simple Example
General formulation

Likewise, each f → x message can be factored:

µfb→x2 =
∑
blob2

∏
blob2

f (. . .) (7)

=
∑
x21

∑
x22

∑
x23

∑
etc.

fb(x2, x21, x22, x23)
∏
etc.

f (. . .) (8)

=
∑
x21

∑
x22

∑
x23

fb(x2, x21, x22, x23)
∑
etc.

∏
etc.

f (. . .) (9)

=
∑
x21

∑
x22

∑
x23

fb(x2, x21, x22, x23)
∏
etc.

(∑
etc.

f (. . .)
)
(10)

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essentials
Simple Example
General formulation

We call these factors the messages from variable to factor node

µfb→x2 =
∑
x21

∑
x22

∑
x23

fb(x2, x21, x22, x23)
∏
etc.

(∑
etc.

f (. . .)
)

=
∑
x21

∑
x22

∑
x23

fb(x2, x21, x22, x23)
∏
etc.

(
µxk→fb

)
(11)

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essentials
Simple Example
General formulation

So to compute a single marginal p(x)

Start at the leaves of the tree (considering x as root)
Compute messages going towards x , using (6) & (11)

To compute all the marginals, for each edge in the graph,
Cache the messages going towards x
Then compute (and cache) all messages in the opposite
direction

Need normalization? Use p(x) or any other marginal.

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essentials
Simple Example
General formulation

So to compute a single marginal p(x)

Start at the leaves of the tree (considering x as root)
Compute messages going towards x , using (6) & (11)

To compute all the marginals, for each edge in the graph,
Cache the messages going towards x
Then compute (and cache) all messages in the opposite
direction

Need normalization? Use p(x) or any other marginal.

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essentials
Simple Example
General formulation

So to compute a single marginal p(x)

Start at the leaves of the tree (considering x as root)
Compute messages going towards x , using (6) & (11)

To compute all the marginals, for each edge in the graph,
Cache the messages going towards x
Then compute (and cache) all messages in the opposite
direction

Need normalization? Use p(x) or any other marginal.

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essential idea
Implementation

Outline

1 The sum-product algorithm
Essentials
Simple Example
General formulation

2 The max-sum algorithm
Essential idea
Implementation

3 Beyond sum-product and max-sum

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essential idea
Implementation

What if, instead of the marginals, we want the maximum
likelihood setting of the variables, that is, the particular
choice of x = xML such that the joint p(xML) is maximized?

A surprisingly simple modification to sum-product can give
us this information.
The reason it works is that sum and maximum both allow
factoring:

4∑
i=0

a(i − 3)2 = a
4∑

i=0

(i − 3)2

and likewise, if a > 0,

max
i∈{0,...,4}

a(i − 3)2 = a
(

max
i∈{0,...,4}

(i − 3)2
)
.

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essential idea
Implementation

What if, instead of the marginals, we want the maximum
likelihood setting of the variables, that is, the particular
choice of x = xML such that the joint p(xML) is maximized?
A surprisingly simple modification to sum-product can give
us this information.
The reason it works is that sum and maximum both allow
factoring:

4∑
i=0

a(i − 3)2 = a
4∑

i=0

(i − 3)2

and likewise, if a > 0,

max
i∈{0,...,4}

a(i − 3)2 = a
(

max
i∈{0,...,4}

(i − 3)2
)
.

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essential idea
Implementation

Outline

1 The sum-product algorithm
Essentials
Simple Example
General formulation

2 The max-sum algorithm
Essential idea
Implementation

3 Beyond sum-product and max-sum

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essential idea
Implementation

We do message passing almost the same as before,
replacing summations with max operations.
So you might think of this algorithm as max-product; BUT,

As a practical matter, we would hit arithmetic underflow
problems; so we use logarithms.
Thus products of distributions become sums of log
probabilities:

fa(x3, x4) · fb(x3, x2) → ln fa(x3, x4) + ln fb(x3, x2)

The algorithm is therefore called max-sum.

In this manner we can easily find the maximum probability of
the joint distribution, i.e.,

pML ≡ max
x

p(x).

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essential idea
Implementation

We do message passing almost the same as before,
replacing summations with max operations.
So you might think of this algorithm as max-product; BUT,
As a practical matter, we would hit arithmetic underflow
problems; so we use logarithms.
Thus products of distributions become sums of log
probabilities:

fa(x3, x4) · fb(x3, x2) → ln fa(x3, x4) + ln fb(x3, x2)

The algorithm is therefore called max-sum.

In this manner we can easily find the maximum probability of
the joint distribution, i.e.,

pML ≡ max
x

p(x).

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essential idea
Implementation

We do message passing almost the same as before,
replacing summations with max operations.
So you might think of this algorithm as max-product; BUT,
As a practical matter, we would hit arithmetic underflow
problems; so we use logarithms.
Thus products of distributions become sums of log
probabilities:

fa(x3, x4) · fb(x3, x2) → ln fa(x3, x4) + ln fb(x3, x2)

The algorithm is therefore called max-sum.

In this manner we can easily find the maximum probability of
the joint distribution, i.e.,

pML ≡ max
x

p(x).

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essential idea
Implementation

What about argmax?

To find the arg max (the value xML at which p(xML) = pML),
we must perform some extra bookkeeping.

Every time we perform a max operation we also store the
settings of the adjacent variables that led to the maximum.
(Not necessarily unique.)
Remember that messages are (in spirit) functions, not
values! We need the max for every possible value of the
variable.
For discrete random variables taking one of K possible
values, that means we need to store a table of K settings
with each variable node, storing the childrens’ settings for
each value.

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essential idea
Implementation

What about argmax?

To find the arg max (the value xML at which p(xML) = pML),
we must perform some extra bookkeeping.
Every time we perform a max operation we also store the
settings of the adjacent variables that led to the maximum.
(Not necessarily unique.)

Remember that messages are (in spirit) functions, not
values! We need the max for every possible value of the
variable.
For discrete random variables taking one of K possible
values, that means we need to store a table of K settings
with each variable node, storing the childrens’ settings for
each value.

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essential idea
Implementation

What about argmax?

To find the arg max (the value xML at which p(xML) = pML),
we must perform some extra bookkeeping.
Every time we perform a max operation we also store the
settings of the adjacent variables that led to the maximum.
(Not necessarily unique.)
Remember that messages are (in spirit) functions, not
values! We need the max for every possible value of the
variable.
For discrete random variables taking one of K possible
values, that means we need to store a table of K settings
with each variable node, storing the childrens’ settings for
each value.

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essential idea
Implementation

Max-sum bookkeeping (with fake numbers)

µan(xn) = max
xm

(ln fa(xn, . . .) + µma)

µbn(xn) = max
xj ,xk

(ln fb(xn, . . .) + µjb + µkb)

µn?(xn) = µan(xn) + µbn(xn)

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essential idea
Implementation

Wrapping up exact inference

Once we find the joint max probability, we then backtrack
to find a set of variable settings that achieves this value.
The Viterbi algorithm is a famous example of this: it finds
the argmax for a chain of hidden variables.

When some variables are observed, we can just substitute
the observed value for the variable (eliminating a max
operation).
A similar idea applies for sum-product: fix each observed
variable to its known value, eliminate a sum.

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Essential idea
Implementation

Wrapping up exact inference

Once we find the joint max probability, we then backtrack
to find a set of variable settings that achieves this value.
The Viterbi algorithm is a famous example of this: it finds
the argmax for a chain of hidden variables.
When some variables are observed, we can just substitute
the observed value for the variable (eliminating a max
operation).
A similar idea applies for sum-product: fix each observed
variable to its known value, eliminate a sum.

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

What do we do with non-tree factor graphs?

Non-tree graphs can be solved too, exactly or approximately:
There’s the junction tree algorithm which solves the
problem.
It sounds slow (exponential cost, p. 417).

If approximate results are adequate, there are many
approaches:

Monte Carlo methods (a.k.a. Sampling): very important
“Loopy Belief Propagation”: use sum-product on the graph,
and hope it converges.

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

What do we do with non-tree factor graphs?

Non-tree graphs can be solved too, exactly or approximately:
There’s the junction tree algorithm which solves the
problem.
It sounds slow (exponential cost, p. 417).

If approximate results are adequate, there are many
approaches:

Monte Carlo methods (a.k.a. Sampling): very important

“Loopy Belief Propagation”: use sum-product on the graph,
and hope it converges.

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

What do we do with non-tree factor graphs?

Non-tree graphs can be solved too, exactly or approximately:
There’s the junction tree algorithm which solves the
problem.
It sounds slow (exponential cost, p. 417).

If approximate results are adequate, there are many
approaches:

Monte Carlo methods (a.k.a. Sampling): very important
“Loopy Belief Propagation”: use sum-product on the graph,
and hope it converges.

Andrew Predoehl Sum-Product, Max-Sum and Beyond

The sum-product algorithm
The max-sum algorithm

Beyond sum-product and max-sum
Summary

Summary

Sum-product lets you find marginal distribution of variables.
Max-sum lets you find the ML variable settings.
These algorithms require the factor graph to be a tree.
If there are cycles in the factor graph, the problem is
harder.

Discussion question:
What does it mean for a model to be a tree, compared to a
non-tree model?

Andrew Predoehl Sum-Product, Max-Sum and Beyond

	The sum-product algorithm
	Essentials
	Simple Example
	General formulation

	The max-sum algorithm
	Essential idea
	Implementation

	Beyond sum-product and max-sum
	Summary

