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K-means Clustering

* Problem of identifying groups, or clusters, of data points in
a multidimensional space

ALGORITHM

e Assume the data Euclidean space.
e Assume we want k classes.
e Assume we start with randomly located cluster centers

The algorithm alternates between two steps:
1) Assignment step: Assign each datapoint to the closest cluster.

2) Refitting step: Move each cluster center to the center of gravity of the
data assigned to it.



-means Clustering

* Goal: an assignment of data points to clusters such that the
sum of the squares of the distances to each data point to its
closest vector (the center of the cluster) is a minimum
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K-means Clustering
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Mixture Model

* We can model arbitrary distributions with density
mixtures.

* A formalism for modeling a probability (density)
function as a sum of parameterized functions.
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Mixture model with k components where each component
is a probability function (Poisson, Binomial) or probability
density function(Normal, Exponential, Gamma etc.)

* Probability mixture modeling as a missing data problem
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e (Gaussian mixture distribution can
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be written as a linear superposition
of Gaussian
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* Formulation of the Gaussian mixture involving an explicit
latent variable

e Latent=hidden

e Mixing coefficient is the latent variable in GMM.

e In a generative model we can Interpret the mixing
coefficients as prior probabilities

For every observed data point x,, there is a corresponding latent
variable z,
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Conditional probability of Z given X and model
parameters. - Posterior probabilities (responsabilities)
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Mixtures of Gaussians

* The conditional probability of Z given X and model
parameter, y(z,;) can also be viewed as the
responsibility that component k takes for explaining’
the observation x. The probability that a point is
generated by a particular Gaussian.

* The values of the latent variables are unknown .
However, for given parameter values it is possible
compute the expected values of the latent variables.
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ixtures of Gaussians

* Generating random samples distributed according to the
Gaussian mixture model
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Mixtures of Gaussians

* Graphical representation of a Zn
Gaussian mixture model for [ e—
a set of N i.i.d. data points
{x_}, with corresponding X,
latent (hidden) points {z_} m .y
N

® Goal: Learn model parameters from data

» Arefinement of this goal is Maximum likelihood
estimation
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aximum likelihood estimation

MLE-= statistical method used for fitting a
mathematical model to given data.

Observation of data -> Estimation of parameters

MLE for m-dimensional Gaussian
e Suppose you have xi, x2, ... xR ~(i.i.d) N(,X)
e Butyoudon’t know porX
e MLE: For which 0 =(p,X) is x1, x2, ... xR most likely?
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aximum likelihood estimation
MLE for Gaussian Mixture Model

e MLE: For which 0 =(,Y) is x1, x2, ... XN and unkown m1..
K most likely?
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Maximun Likelihoods Estimation

* MLE is an optimization problem

* Ln of sum is hard to solve it by an analytical way

Most common solutions
e Expectation Maximization (EM)

e MCMC sampling
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EM for Gaussian mixtures

I Assign some initial values for the means, covariances, and mixing
coefficients
II.  Expectation or E step

Using the current value for the parameters to evaluate
responsibilities or the posterior probabilities that each Gaussian
generates each datapoint.

[II.  Maximization or M step

Using the result of E step to re-estimate the means, covariances,
and mixing coefficients

Assuming that the data really was generated this way, change the
parameters of each Gaussian to maximize the probability that it would
generate the data it is currently responsible for.
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EM for Gaussian mixtures
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EM for Gaussian mixtures

Given a Gaussian mixture model, the goal
is to maximize the likelihood function with
respect to the parameters.

Steps: Initialization, E, M, compare with
likelyhood

Updating each Gaussian definitely improves
the probability of generating the data if we
generate it from the same Gaussians after the
parameter updates.
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General EM

e Goal:

e Maximizing the log likelihood function

Inp( X18)=In{S ,P( X,218))
e Given a joint distribution p(X, Z|®) over observed variables X
and latent variables Z, governed by parameters ©
1. Choose an initial setting for the parameters ©°d
2. E step Evaluate p(Z|X,0°!d)
3. M step Evaluate ©"¢" given by
Orev = argmaxyQ (0@ ,0°1)
QO ,0°) = 3, p(Z|X, ©In p(X, Z| ©)
4. It the convergence criterion is not satisfied,
then let ®°ld & Enew
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General application - Clustering

Pattern Recognition
Spatial Data Analysis
create thematic maps in GIS by clustering feature
spaces
detect spatial clusters and explain them in spatial
data mining
Image Processing
Economic Science (especially market research)
WWW
Document classification
Cluster Weblog data to discover groups of similar
access patterns
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SUMMARY

* Mixture Models (MM) for modeling using different or
the same kind of various probability function.
* Gaussian MM (GMM) used in two ways:
» Model a distribution
 CLUSTERING

* EM for finding MLE of parameters in probabilistic
models where the model depends on latent variables.

* EM naturally applicable to training probabilistic
models. It is useful in models where some data are
missed.
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