

Hidden Markov Models

C SC 645
Raquel Torres
02.05.09

Hidden Markov Models

HMM

Elements
Examples
The three basic problems (and its solutions)
Problem 1 - Forward-backward algorithm
Problem 2 - Viterbi algorithm
Problem 3-Sum product / Baum-Welch
More Examples

Hidden Markov Models

A hidden Markov model (HMM) is a discrete-sate model in which the system being modeled is assumed to be a Markov process with unknown parameters.
$\mathrm{S}=\left\{\mathrm{S}_{1}, \mathrm{~S}_{2} \ldots \mathrm{~S}_{\mathrm{N}}\right\} \quad$ Individual states
q_{t} is the state at time t
$\mathrm{O}=\mathrm{o}_{1}, \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{T}}$ Observation sequence

Hidden Markov Models

Examples of HMM:

- Text written by Shakespeare in some parts has been edited by a monkey
- A casino has two dice, one loaded and the other not. Toggles between them.

Case	Observations	Hidden state
Text	Alphabet	Shakespeare/monkey
Dice	$1-6$	Fair (F) / loaded (L)

Hidden Markov Models

Elements of a HMM

An HMM is completely defined by:

1) N, the number of states in the model $S=\left\{S_{1}, S_{2} \ldots S_{N}\right\}$
2) M, the number of distinct observation symbols per state (An alphabet of symbols $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{M}}\right\}$)
3) The state transition probability distribution $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ where

$$
a_{i j}=P\left[q_{t+1}=S_{j} \mid q_{t}=S_{i}\right], \quad 1 \leq i, j \leq N .
$$

4) Emission probability. The observation symbol probability distribution in state $j, B=\left\{b_{j}(k)\right\}$, where:

$$
b_{j}(k)=P\left[v_{k} \text { at } t \mid q_{t}=S_{j}\right], \quad 1 \leq j \leq N \quad 1 \leq k \leq M .
$$

5) The initial state distribution $\pi=\left\{\pi_{i}\right\} \quad$ where:

$$
\pi_{i}=P\left[q_{1}=S_{i}\right], \quad 1 \leq i \leq N .
$$

Hidden Markov Models

Elements of a HMM

We will use the next notation to make reference to

The model:

Where

$$
\lambda=(A, B, \pi)
$$

$A=$ transition matrix.
$B=$ Emission matrix.

The probability of an observation sequence given $P(O \mid \lambda)$ a model.

Hidden Markov Models

Example 1

Transition probability matrix:

	Low	High		
Low	0.3	0.7		
High	0.2	0.8		
Emission probability matrix:				
Rain				Dry
Low	0.6	0.4		
High	0.4	0.3		

Two states : 'Low' and 'High' atmospheric pressure.
Two observations : 'Rain' and 'Dry'.
Initial probabilities: $\mathrm{P}\left({ }^{(L L o w ')}=0.4, \mathrm{P}\left({ }^{(' H i g h ')}=0.6\right.\right.$.

Hidden Markov Models

Suppose we want to calculate a probability of a sequence of observations in our example, \{'Dry','Rain'\}.

Consider all possible hidden state sequences:

```
    P({‘Dry','Rain`} ) = P({'Dry','Rain'} , {'Low','Low'}) + P({'Dry','Rain`} ,
{'Low','High'}) + P({'Dry','Rain'} , {'High','Low'}) + P({'Dry','Rain'} ,
{'High','High'})
```

where first term is :

```
P({'Dry','Rain'} , {'Low','Low'})=
P({'Dry','Rain'} |{'Low','Low'}) P({'Low','Low'}) =
P('Dry'|'Low')P('Rain'|'Low') P('Low')P('Low'|'Low)
= 0.4*0.4*0.6*0.4*0.3
```


Hidden Markov Models

The Three
 Basic Problems of HMM

Hidden Markov Models

The Three Basic Problems of HMM

The casino

A casino has two dice:
Fair die:
$P(1)=P(2)=P(3)=P(5)=P(6)=1 / 6$
Loaded die:
$P(1)=P(2)=P(3)=P(5)=1 / 10$
$P(6)=1 / 2$
The casino alternates between the dice once every 20 turns
Game:
The player throws (a die always fair)
The casino throws (perhaps with the fair die, perhaps with a loaded)
The highest number wins

Hidden Markov Models

Emission probability

$$
\begin{aligned}
& P(1 \mid F)=1 / 6 \\
& P(2 \mid F)=1 / 6 \\
& P(3 \mid F)=1 / 6 \\
& P(4 \mid F)=1 / 6 \\
& P(5 \mid F)=1 / 6 \\
& P(6 \mid F)=1 / 6
\end{aligned}
$$

$P(1 \mid L)=1 / 10$
$P(2 \mid L)=1 / 10$
$P(3 \mid L)=1 / 10$
$P(4 \mid L)=1 / 10$
$P(5 \mid L)=1 / 10$
$P(6 \mid L)=1 / 2$
Raquel Torres

Hidden Markov Models

The Three Basic Problems of HMM

Given the next sequence:
124552646214614613613666166466163 6616366163616515615115146123562344

How likely is this sequence, given our model of how the casino works?

Hidden Markov Models

The Three Basic Problems of HMM

"Problem 1 (Evaluation): Given the observation sequence $\mathrm{O}=\mathrm{o}_{1}, \ldots, \mathrm{o}_{\mathrm{T}}$ and an HMM model $\quad \lambda=(A, B, \pi)$, how do we compute the probability of O given the model?

What is $P(O \mid \lambda)$?
The probability of an observation sequence O is the sum of the probabilities of all possible state sequences in the model.

Naïve computation is very expensive. Given T observations and N states, there are N^{\top} possible state sequences.

Hidden Markov Models

The Three Basic Problems of HMM

Again, given the next sequence: 124552646214614613613666166466163 6616366163616515615115146123562344

What portions of the sequence were generated by the loaded die and which by the fair die?

Hidden Markov Models

The Three Basic Problems of HMM
-Problem 2 (Decoding): Given the observation sequence $O=o_{1}, \ldots, 0_{T}$ and an HMM model $\lambda=(A, B, \pi)$, how do we find the state sequence that best explains the observations?

Hidden Markov Models

The Three Basic Problems of HMM

Again, given the next sequence: 124552646214614613613666166466163 6616366163616515615115146123562344

How the dice are loaded? How often the casino alternates between the dice?

Hidden Markov Models

The Three Basic Problems of HMM
"Problem 3 (Learning): How do we adjust the model parameters $\lambda=(A, B, \pi)$, to maximize $P(O \mid \lambda)$?

Hidden Markov Models

The forward-backward algorithm

Problem 1: Evaluation Problem

Given a model and a sequence of observations, how do we compute the probability that the observed sequence was produced by the model?

The forward-backward algorithm
The algorithm comprises three steps:

1. computing forward probabilities
2. computing backward probabilities
3. computing smoothed values

Hidden Markov Models

The forward-backward algorithm
The forward probability
What is the probability that, given a model λ, at time t the state is i and the partial observation $o_{1} \ldots o_{t}$ has been generated?
$\alpha_{t}(i)=P\left(o_{1} \ldots o_{t}, q_{t}=s_{i} \mid \lambda\right)$
We reduce the complexity of calculating this probability by first calculating partial probabilities.

These represent the probability of getting to a particular state, s, at time t .

Hidden Markov Models

The forward-backward algorithm

- Initialization

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right) \quad 1 \leq i \leq N
$$

- Induction

$$
\alpha_{t}(j)=\left\lfloor\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j}\right\rfloor b_{j}\left(o_{t}\right) \quad 2 \leq t \leq T, 1 \leq j \leq N
$$

- Termination

$$
P(O \mid \lambda)=\sum_{i=1}^{N} \alpha_{T}(i)
$$

Hidden Markov Models

The backward probability
The forward-backward algorithm
The probability of the partial observation sequence from $t+1$ to the end, given state S_{i} at time t and the model λ.

$$
\beta_{t}(i)=P\left(o_{t+1} \ldots o_{T} \mid q_{t}=s_{i}, \lambda\right)
$$

Hidden Markov Models

The forward-backward algorithm

- Initialization

$$
\beta_{T}(i)=1, \quad 1 \leq i \leq N
$$

- Induction

$$
\beta_{t}(i)=\left[\sum_{j=1}^{N} a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j)\right] t=T-1 \ldots 1,1 \leq i \leq N
$$

- Termination

$$
P(O \mid \lambda)=\sum_{i=1}^{N} \pi_{i} \beta_{1}(i)
$$

Hidden Markov Models

-Problem 2 (Decoding): Finding the "optimal" state sequence associated with given observation sequence.

The Viterbi algorithm
"Similar to computing the forward probabilities, but instead of summing over transitions from incoming states, compute the maximum.

Forward:

$$
\alpha_{t}(j)=\left\lfloor\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j}\right\rfloor b_{j}\left(o_{t}\right)
$$

Viterbi Recursion:

$$
\delta_{t}(j)=\left[\max _{1 \leq i \leq N} \delta_{t-1}(i) a_{i j}\right] b_{j}\left(o_{t}\right)
$$

Hidden Markov Models

The Viterbi algorithm
To implement the solution to problem 2, we define:

$$
\begin{array}{r}
\gamma_{t}(i)=P\left(q_{t}=S_{i} \mid O, \lambda\right) \\
\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{P(O \mid \lambda)}=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{i=1}^{N} \alpha_{t}(i) \beta_{t}(i)}
\end{array}
$$

We want to find the state sequence $Q=q_{1} \ldots q_{T}$, such that

$$
q_{t}=\underset{1 \leq i \leq N}{\operatorname{argmax}}\left[\gamma_{t}(i)\right]
$$

Hidden Markov Models

The Viterbi algorithm

- Initialization:

$$
\delta_{1}(i)=\pi_{i} b_{j}\left(o_{1}\right) \quad 1 \leq i \leq N
$$

- Induction:

$$
\begin{aligned}
& \delta_{t}(j)=\left\lceil\max _{1 \leq i \leq N} \delta_{t-1}(i) a_{i j}\right] b_{j}\left(o_{t}\right) \\
& \psi_{t}(j)=\left\lfloor\underset{1 \leq i \leq N}{\arg \max } \delta_{t-1}(i) a_{i j}\right\rfloor 2 \leq t \leq T, 1 \leq j \leq N
\end{aligned}
$$

- Termination:

$$
p^{*}=\max _{1 \leq i \leq N} \delta_{T}(i) \quad q_{T}^{*}=\underset{1 \leq i \leq N}{\arg \max } \delta_{T}(i)
$$

- Path (state sequence) backtracking:

$$
q_{t}^{*}=\psi_{t+1}\left(q_{t+1}^{*}\right) \quad t=T-1, \ldots, 1
$$

Hidden Markov Models

The Viterbi algorithm

Observations: dry

We will first define the partial probability which is the probability of reaching a particular intermediate state in the trellis. We then show how these partial probabilities are calculated at $\mathrm{t}=1$ and at $\mathrm{t}=\mathrm{n}(>1)$.

Hidden Markov Models

These partial probabilities differ from those calculated in the forward algorithm since they represent the probability of the most probable path to a state at time t , and not a total.

In particular, each state at time $t=T$ will have a partial probability and a partial best path. We find the overall best path by choosing the state with the maximum partial probability and choosing its partial best path

Example:
http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html dev/viterbi algorith m/s3 pg1.html

Hidden Markov Models

The Three Basic Problems of HMM
"Problem 3 (Learning): How do we adjust the model parameters $\lambda=(A, B, \pi)$, to maximize $P(O \mid \lambda)$?

Given an initial model λ, we can always find a model λ ', such that

$$
P\left(O \mid \lambda^{\prime}\right) \geq P(O \mid \lambda)
$$

Hidden Markov Models

Use the forward-backward (or Baum-Welch) algorithm, which is a hillclimbing algorithm.

Using an initial parameter instantiation, the forward-backward algorithm iteratively re-estimates the parameters and improves the probability that given observation are generated by the new parameters.

Hidden Markov Models

The sum-product / Baum-Welch algorithm
Three parameters need to be re-estimated:

- Initial state distribution: π_{i}
- Transition probabilities: $\mathrm{a}_{\mathrm{i}, \mathrm{j}}$
- Emission probabilities: $b_{i}\left(o_{t}\right)$

Hidden Markov Models

Example:
 Word recognition (your turn)

Hidden Markov Models

Example: Word recognition

Typed word recognition, assume all characters are separated.

Am lierst

Character recognizer outputs probability of the image being particular character, P (image|character).

Hidden state Observation

Hidden Markov Models

Example: Word recognition

- Hidden states of $\mathrm{HMM}=$ characters.
- Observations = typed images of characters segmented from the image Note that there is an infinite number of observations

$$
v_{\alpha}
$$

- Emission probabilities = character recognizer scores.

$$
B=\left(b_{i}\left(v_{\alpha}\right)\right)=\left(P\left(v_{\alpha} \mid s_{i}\right)\right)
$$

Hidden Markov Models

Example: Word recognition

- If lexicon is given, we can construct separate HMM models for each lexicon word.

Amherst

- Here recognition of word image is equivalent to the problem of evaluating few HMM models.
-This is an application of Evaluation problem.

Hidden Markov Models

- We can construct a single HMM for all words.

Example: Word recognition

- Hidden states = all characters in the alphabet.
- Transition probabilities and initial probabilities are calculated from language model.
- Observations and observation probabilities are as before.

- Here we have to determine the best sequence of hidden states, the one that most likely produced word image.
- This is an application of Decoding problem.

Hidden Markov Models

