

C SC 645 Raquel Torres 02.05.09

#### Outline

HMM Elements Examples

The three basic problems (and its solutions) Problem 1 – Forward-backward algorithm Problem 2 – Viterbi algorithm Problem 3 - Sum product / Baum-Welch

More Examples

HMM - Hidden Markov Models





HMM

A hidden Markov model (HMM) is a discrete-sate model in which the system being modeled is assumed to be a Markov process with unknown parameters.

 $S={S_1, S_2... S_N}$  Individual states

 $q_t$  is the state at time t

 $O= o_1, o_2...o_T$  Observation sequence





Examples of HMM:

Text written by Shakespeare in some parts has been edited by a monkey

 A casino has two dice, one loaded and the other not. Toggles between them.

| Case | Observations | Hidden state          |
|------|--------------|-----------------------|
| Text | Alphabet     | Shakespeare/monkey    |
| Dice | 1-6          | Fair (F) / loaded (L) |

HMM

#### An HMM is completely defined by:

- 1) N, the number of states in the model  $S = \{S_1, S_2 \dots S_N\}$
- M, the number of distinct observation symbols per state (An alphabet of symbols V={v<sub>1</sub>, v<sub>2</sub>... v<sub>M</sub>})
- 3) The state transition probability distribution  $A=(a_{ij})$  where

$$a_{ij} = P[q_{t+1} = S_j | q_t = S_i], \quad 1 \le i, j \le N.$$

4) Emission probability. The observation symbol probability distribution in state j,  $B=\{b_J(k)\}$ , where:

$$b_j(k) = P[v_k \text{ at } t | q_t = S_j], \quad 1 \le j \le N \quad 1 \le k \le M.$$

5) The initial state distribution 
$$\pi = \{\pi_i\}$$
 where:

$$\pi_i = P[q_1 = S_i], \quad 1 \leq i \leq N.$$

-



Elements of a HMM

We will use the next notation to make reference to

The model:

Where A= transition matrix. B= Emission matrix.

 $\lambda = (A, B, \pi)$ 

The probability of an observation sequence given a model.

 $P(O \mid \lambda)$ 

HMM - Hidden Markov Models



#### Example 1

Transition probability matrix:

|      | Low | High |
|------|-----|------|
| Low  | 0.3 | 0.7  |
| High | 0.2 | 0.8  |

#### Emission probability matrix:

|      | Rain | Dry |
|------|------|-----|
| Low  | 0.6  | 0.4 |
| High | 0.4  | 0.3 |

Two states : 'Low' and 'High' atmospheric pressure. Two observations : 'Rain' and 'Dry'. Initial probabilities: P('Low')=0.4 , P('High')=0.6 .



Example 1

Suppose we want to calculate a probability of a sequence of observations in our example, {'Dry','Rain'}.

Consider all possible hidden state sequences: P({'Dry','Rain'}) = P({'Dry','Rain'}, {'Low','Low'}) + P({'Dry','Rain'}, {'Low','High'}) + P({'Dry','Rain'}, {'High','Low'}) + P({'Dry','Rain'}, {'High','High'})

where first term is : P({'Dry','Rain'}, {'Low','Low'})= P({'Dry','Rain'} | {'Low','Low'}) P({'Low','Low'}) = P('Dry'|'Low')P('Rain'|'Low') P('Low')P('Low'|'Low) = 0.4\*0.4\*0.6\*0.4\*0.3

## The Three Basic Problems of HMM

HMM - Hidden Markov Models

#### The Three Basic Problems of HMM

#### The casino

A casino has two dice: Fair die: P(1) = P(2) = P(3) = P(5) = P(6) = 1/6Loaded die: P(1) = P(2) = P(3) = P(5) = 1/10 P(6) = 1/2The casino alternates between the dice once every 20 turns

Game: The player throws (a die always fair) The casino throws (perhaps with the fair die, perhaps with a loaded) The highest number wins



HMM - Hidden Markov Models



The Three Basic Problems of HMM

Given the next sequence: 124552646214614613613666166466163 6616366163616515615115146123562344

How likely is this sequence, given our model of how the casino works?



The Three Basic Problems of HMM

•Problem 1 (Evaluation): Given the observation sequence  $O=o_1,...,o_T$  and an HMM model  $\lambda = (A, B, \pi)$ , how do we compute the probability of O given the model?

What is  $P(O \mid \lambda)$ ?

The probability of an observation sequence O is the sum of the probabilities of all possible state sequences in the model.

Naïve computation is very expensive. Given T observations and N states, there are  $N^T$  possible state sequences.



The Three Basic Problems of HMM

Again, given the next sequence: 124552646214614613613666166466163 6616366163616515615115146123562344

What portions of the sequence were generated by the loaded die and which by the fair die?



The Three Basic Problems of HMM

•Problem 2 (Decoding): Given the observation sequence  $O=o_1,...,o_T$  and an HMM model  $\lambda = (A, B, \pi)$ , how do we find the state sequence that best explains the observations?



The Three Basic Problems of HMM

Again, given the next sequence: 124552646214614613613666166466163 6616366163616515615115146123562344

How the dice are loaded? How often the casino alternates between the dice?



The Three Basic Problems of HMM

•Problem 3 (Learning): How do we adjust the model parameters  $\lambda = (A, B, \pi)$ , to maximize  $P(O \mid \lambda)$ ?



#### The forward-backward algorithm

#### **Problem 1: Evaluation Problem**

Given a model and a sequence of observations, how do we compute the probability that the observed sequence was produced by the model?

#### The forward-backward algorithm

The algorithm comprises three steps:

- 1. computing forward probabilities
- 2. computing backward probabilities
- 3. computing smoothed values



The forward-backward algorithm

The forward probability

What is the probability that, given a model  $\lambda$ , at time t the state is i and the partial observation  $o_1 \dots o_t$  has been generated?

$$\alpha_t(i) = P(o_1 \dots o_t, q_t = s_i \mid \lambda)$$

We reduce the complexity of calculating this probability by first calculating partial probabilities.

These represent the probability of getting to a particular state, s, at time t.



HMM - Hidden Markov Models

The forward-backward algorithm

Initialization

$$\alpha_1(i) = \pi_i b_i(o_1) \quad 1 \le i \le N$$

#### Induction

$$\alpha_t(j) = \left\lfloor \sum_{i=1}^N \alpha_{t-1}(i) a_{ij} \right\rfloor b_j(o_t) \quad 2 \le t \le T, 1 \le j \le N$$

Termination

$$P(O \mid \lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$$

HMM - Hidden Markov Models

The backward probability

The forward-backward algorithm

Hidden Markov Models

The probability of the partial observation sequence from t+1 to the end, given state S<sub>i</sub> at time t and the model  $\lambda$  .



HMM - Hidden Markov Models

The forward-backward algorithm

#### Initialization

$$\beta_T(i) = 1, \quad 1 \le i \le N$$

Induction

$$\beta_{t}(i) = \left[\sum_{j=1}^{N} a_{ij} b_{j}(o_{t+1}) \beta_{t+1}(j)\right] t = T - 1 \dots 1, 1 \le i \le N$$

Termination

$$P(O \mid \lambda) = \sum_{i=1}^{N} \pi_i \beta_1(i)$$

HMM - Hidden Markov Models

#### The Viterbi algorithm

•Problem 2 (Decoding): Finding the "optimal" state sequence associated with given observation sequence.

#### The Viterbi algorithm

Similar to computing the forward probabilities, but instead of summing over transitions from incoming states, compute the maximum.

Forward:

$$\alpha_t(j) = \left\lfloor \sum_{i=1}^N \alpha_{t-1}(i) a_{ij} \right\rfloor b_j(o_t)$$

Viterbi Recursion:

$$\delta_t(j) = \left[\max_{1 \le i \le N} \delta_{t-1}(i) a_{ij}\right] b_j(o_t)$$

HMM - Hidden Markov Models



The Viterbi algorithm

To implement the solution to problem 2, we define:

 $\gamma_t(i) \,=\, P(q_t\,=\,S_i \big| O,\,\lambda)$ 

$$\gamma_t(i) = \frac{\alpha_t(i) \ \beta_t(i)}{P(O|\lambda)} = \frac{\alpha_t(i) \ \beta_t(i)}{\sum\limits_{i=1}^N \alpha_t(i) \ \beta_t(i)}$$

We want to find the state sequence  $Q=q_1...q_T$ , such that

$$q_t = \underset{1 \le i \le N}{\operatorname{argmax}} [\gamma_t(i)],$$

HMM - Hidden Markov Models



The Viterbi algorithm

- Initialization:  $\delta_1(i) = \pi_i b_i(o_1) \quad 1 \le i \le N$
- Induction:

$$\delta_{t}(j) = \left[\max_{1 \le i \le N} \delta_{t-1}(i) a_{ij}\right] b_{j}(o_{t})$$
$$\psi_{t}(j) = \left[\arg\max_{1 \le i \le N} \delta_{t-1}(i) a_{ij}\right] \quad 2 \le t \le T, 1 \le j \le N$$

- Termination:  $p^* = \max_{1 \le i \le N} \delta_T(i)$   $q_T^* = \operatorname*{arg\,max}_{1 \le i \le N} \delta_T(i)$
- Path (state sequence) backtracking:  $q_t^* = \psi_{t+1}(q_{t+1}^*)$  t = T - 1, ..., 1



# We will first define the partial probability which is the probability of reaching a particular intermediate state in the trellis. We then show how these partial probabilities are calculated at t=1 and at t=n (> 1).

The Viterbi algorithm



These partial probabilities differ from those calculated in the forward algorithm since they represent the probability of the most probable path to a state at time t, and not a total.

In particular, each state at time t = T will have a partial probability and a partial best path. We find the overall best path by choosing the state with the maximum partial probability and choosing its partial best path

#### Example:

http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html\_dev/viterbi\_algorith m/s3\_pg1.html



The Three Basic Problems of HMM

•Problem 3 (Learning): How do we adjust the model parameters  $\lambda = (A, B, \pi)$ , to maximize  $P(O \mid \lambda)$ ?

Given an initial model  $\lambda$ , we can always find a model  $\lambda$ ; such that

 $P(O \,|\, \lambda') \geq P(O \,|\, \lambda)$ 



The sum-product / Baum-Welch algorithm

Use the forward-backward (or Baum-Welch) algorithm, which is a hillclimbing algorithm.

Using an initial parameter instantiation, the forward-backward algorithm iteratively re-estimates the parameters and improves the probability that given observation are generated by the new parameters.



#### The sum-product / Baum-Welch algorithm

Three parameters need to be re-estimated:

- Initial state distribution:  $\pi_i$ 
  - Transition probabilities: a<sub>i,i</sub>
  - Emission probabilities:  $b_i(\tilde{o}_t)$

Example: Word recognition (your turn)

HMM - Hidden Markov Models



#### Example: Word recognition

Typed word recognition, assume all characters are separated.



Character recognizer outputs probability of the image being particular character, P(image|character).





Example: Word recognition

- Hidden states of HMM = characters.
- Observations = typed images of characters segmented from the image Note that there is an infinite number of observations

 $V_{\alpha}$ 

• Emission probabilities = character recognizer scores.

$$B = (b_i(v_\alpha)) = (P(v_\alpha \mid s_i))$$



**Example: Word recognition** 

• If lexicon is given, we can construct separate HMM models for each lexicon word.



• Here recognition of word image is equivalent to the problem of evaluating few HMM models.

•This is an application of **Evaluation problem.** 



Example: Word recognition

- We can construct a single HMM for all words.
- Hidden states = all characters in the alphabet.
- Transition probabilities and initial probabilities are calculated from language model.
- Observations and observation probabilities are as before.



- Here we have to determine the best sequence of hidden states, the one that most likely produced word image.
- This is an application of **Decoding problem.**



#### Discussion

HMM - Hidden Markov Models