Hybrid Monte Carlo

Radford M. Neal. An improved acceptance procedure for the hybrid monte carlo algorithm. *J. Comput. Phys.*, 111(1):194–203, 1994

Swaminathan Sankararaman

13 Feb 2009

- Motivation
- Solution

Particular And Antemark (2) Hybrid Monte Carlo

- Motivation
- How does it work?
- Analysis
- Applications
- Improvement

Motivation Solution

Current Section

- Motivation
- Solution

2 Hybrid Monte Carlo

- Motivation
- How does it work?
- Analysis
- Applications
- Improvement

Motivation Solution

Problem with Naive Metropolis-Hastings

• Random Walks travel expected distance of $O(\sqrt{n})$ after *n* steps

Swaminathan Sankararaman Hybrid Monte Carlo

Motivation Solution

What to do?

Motivation Solution

• What do we know about the problem?

Motivation Solution

What to do?

- What do we know about the problem?
- What do we know about the structure?

Motivation Solution

What to do?

- What do we know about the problem?
- What do we know about the structure?

Motivation Solution

Observation

 When a ball is on an incline, the angle of incline dictates the force with which it rolls down

Motivation Solution

Characterization for a physical system

• We have a system with particles which have a *position* **x** and a *momentum* **u**

Motivation Solution

Characterization for a physical system

- We have a system with particles which have a *position* **x** and a *momentum* **u**
- We have energies associated with particles

Motivation Solution

Characterization for a physical system

- We have a system with particles which have a *position* **x** and a *momentum* **u**
- We have energies associated with particles
 - Potential Energy *E*(*x*)

$$P(x) = \frac{1}{Z_E} \exp(-E(x))$$

Motivation Solution

Characterization for a physical system

- We have a system with particles which have a *position* **x** and a *momentum* **u**
- We have energies associated with particles
 - Potential Energy *E*(*x*)

$$P(x) = \frac{1}{Z_E} \exp(-E(x))$$

• Kinetic Energy $K(u) = \frac{1}{2} \sum_{i} u_i^2$

$$P(u) = \frac{1}{Z_k} \exp(-K(u))$$

Motivation Solution

Characterization for a physical system

- We have a system with particles which have a *position* **x** and a *momentum* **u**
- We have energies associated with particles
 - Potential Energy *E*(*x*)

$$P(x) = \frac{1}{Z_E} \exp(-E(x))$$

• Kinetic Energy $K(u) = \frac{1}{2} \sum_{i} u_i^2$

$$P(u) = \frac{1}{Z_k} \exp(-K(u))$$

• The gradient of *E*(*x*) dictates the change in momentum

Motivation Solution

Characterization for a physical systems

• The total energy of the system is

$$H(x,u)=E(x)+K(u)$$

Motivation Solution

Characterization for a physical systems

• The total energy of the system is

$$H(x,u)=E(x)+K(u)$$

• The joint distribution over x and u is

$$P(x, u) = \frac{1}{Z_H} \exp(-H(x, u)) = \mathbf{P}(\mathbf{x})\mathbf{P}(\mathbf{u})$$

Motivation Solution

Characterization for a physical systems

• The total energy of the system is

$$H(x,u)=E(x)+K(u)$$

• The joint distribution over x and u is

$$P(x, u) = \frac{1}{Z_H} \exp(-H(x, u)) = \mathbf{P}(\mathbf{x})\mathbf{P}(\mathbf{u})$$

P(x) and P(u) are independent

Motivation Solution

Characterization in General

• Target distribution *P*(*x*) is everywhere differentiable

Motivation Solution

- Target distribution P(x) is everywhere differentiable
- Represent the Potential energy as $\log P(x)$

Motivation Solution

- Target distribution P(x) is everywhere differentiable
- Represent the Potential energy as $\log P(x)$
- Augment with Kinetic Energy K(u)

Motivation Solution

- Target distribution P(x) is everywhere differentiable
- Represent the Potential energy as $\log P(x)$
- Augment with Kinetic Energy K(u)
- Sample P(x, u) taking into advantage the gradient.

Motivation Solution

- Target distribution P(x) is everywhere differentiable
- Represent the Potential energy as $\log P(x)$
- Augment with Kinetic Energy K(u)
- Sample P(x, u) taking into advantage the gradient.
- And Then?

Motivation Solution

Sampling - Idea

• Use Hamiltonian Dynamics at a given sample (*x_i*, *u_i*)

Motivation Solution

Sampling - Idea

• Use Hamiltonian Dynamics at a given sample (*x_i*, *u_i*)

$$\frac{dx_i}{dt} = \frac{\partial H}{\partial u_i} = u$$

Motivation Solution

Sampling - Idea

• Use Hamiltonian Dynamics at a given sample (*x_i*, *u_i*)

$$\frac{dx_i}{dt} = \frac{\partial H}{\partial u_i} = u$$

$$\frac{du_i}{dt} = -\frac{\partial H}{\partial x_i} = -\nabla E(x_i)$$

Motivation Solution

Sampling - Idea

Use Hamiltonian Dynamics at a given sample (x_i, u_i)

$$\frac{dx_i}{dt} = \frac{\partial H}{\partial u_i} = u$$

$$\frac{du_i}{dt} = -\frac{\partial H}{\partial x_i} = -\nabla E(x_i)$$

Modify using above equations to get a new sample

Motivation Solution

Leapfrog Discretization

$$u(\tau + \frac{\epsilon}{2}) = u(\tau) - \frac{\epsilon}{2} \nabla E(x(\tau))$$
$$x(\tau + \epsilon) = x(\tau) + \epsilon u(\tau + \frac{\epsilon}{2})$$
$$u(\tau + \epsilon) = u(\tau + \frac{\epsilon}{2}) - \frac{\epsilon}{2} \nabla E(x(\tau + \epsilon))$$

Time Reversible and Volume Preserving

Motivation How does it work? Analysis Applications Improvement

Current Section

- The Dynamical Method
 - Motivation
 - Solution

2 Hybrid Monte Carlo

- Motivation
- How does it work?
- Analysis
- Applications
- Improvement

Motivation How does it work? Analysis Applications Improvement

Two problems with the dynamical method Discretization errors

Motivation How does it work? Analysis Applications Improvement

Two problems with the dynamical method Energy Well

We might be stuck in an energy well (intuitively, a local maxima)

Motivation How does it work? Analysis Applications Improvement

Stochastic Step

• Replace all values of momentum *u* with values picked from their distribution

Motivation How does it work? Analysis Applications Improvement

- Replace all values of momentum *u* with values picked from their distribution
- Why can we do this?

Motivation How does it work? Analysis Applications Improvement

- Replace all values of momentum *u* with values picked from their distribution
- Why can we do this?
 - P(u) is independent of P(x)

Motivation How does it work? Analysis Applications Improvement

- Replace all values of momentum *u* with values picked from their distribution
- Why can we do this?
 - P(u) is independent of P(x)
- What does this get us?

Motivation How does it work? Analysis Applications Improvement

- Replace all values of momentum *u* with values picked from their distribution
- Why can we do this?
 - *P*(*u*) is independent of *P*(*x*)
- What does this get us?
 - We can move to regions of different energies H
 - Usually enough to ensure ergodicity

Motivation How does it work? Analysis Applications Improvement

Accept/Reject Step

- Similar to MH
- The Acceptance Probability is a function of the difference in energies

$$a(\Delta H) = min(1, exp(-\Delta H))$$

Motivation How does it work? Analysis Applications Improvement

Detailed Balance

Motivation How does it work? Analysis Applications Improvement

Speed of Computation

- Tunable Parameters L and ϵ
- Tradeoff between computation time and quality
 - Generally works better for non-local variables (higher dimensions?)

Motivation How does it work? Analysis Applications Improvement

- Simulation of Physical Systems
- Optimization
- Sampling

Motivation How does it work? Analysis Applications Improvement

Acceptance Procedure using Windows

- Select window to move to
- Select state within window to move to
- Free Energy

$$F(W) = -\log \sum_{X \in W} exp(-H(X))$$

• Acceptance Probability is $a(\Delta F)$

Motivation How does it work? Analysis Applications Improvement

Questions?

Swaminathan Sankararaman Hybrid Monte Carlo