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Overview
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Motivation

• Overall goal: unsupervised learning of
probabilistic models for generating and
parsing images

• Idea: build on PCFG (thanks Federico!)
and MRF

• Want to bridge gap between ML natural
language grammars and computer vision
– But, images are far more complex than sentences;
– have cluttered background and unknown object

pose and unknown aspect;
– and input of images is far more complex.
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Background

• Probabilistic Context Free Grammars (PCFG)
– Idea: Add probabilities to the rules of a CFG. Can determine:

• likelihood of a sentence given a grammar
• most likely parse of a sentence

– Good things: Can recursively support arbitrary number of leaf nodes, since
it’s a tree

– Bad things: Assumes subtrees are independent--hard to model spatial
relationships

• Markov Random Fields (MRF) (a.k.a. Markov Networks)
– Idea: A graphical model with undirected edges and nodes that have the

Markov property (conditional independence)
– Good things: Can depend on other parts of the model, and thus can model

spatial relationships
– Bad things: It’s a “rigid” graph structure, so it’s hard to model a variable

number of features
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Problem Statement

Set of images

INPUT OUTPUT

• Unknown pose
• Unknown aspect
• Object may or may

not be present

?
Probabilistic

Model for
Object Categories



Unsupervised Learning of PGMMs for Object LearningStephen W. Thomas

Approach

• Step 1. Create Attribute Features (AF) to represent
images

Process to get the features:

1. Apply Kadir-Brady saliency
detector to select circular regions

2. Apply SIFT operator to obtain
Lowe’s feature descriptor

3. Perform PCA on the appearance
attributes to obtain 15-
dimensional subspace
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Approach

• Step 2. Represent images by a triplet of AF’s called
oriented triplets

Benefits of triplets:

1. Invariant to scale and orientation

2. Lends itself well to dynamic
programming solutions

3. Good for structure pursuit, since
we can combine two trees to
make another



Unsupervised Learning of PGMMs for Object LearningStephen W. Thomas

Approach

Why do they need to be oriented?
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Approach

• Learning task is broken into two phases
– Learning the structure of the model (harder)
– Learning the parameters of the model

• Grammatical parameters, spatial parameters
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Definition of PGMM

• A graph G = (V, E)
– V contains three types of nodes: OR, AND, and LEAF

AND

OR
LEAF

Correspond to AF’s

Correspond to clique

Background node

Set of object leafs

Correspond to different
aspects of the object
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Model Description

Parameters of AF

Parameters of 
spatial relations

Observability
 variables

Parameters of grammar

Topological structure 

Appearance vectors

Location, orientation of feature

A PGMM specifies the probability distribution of the AF’s observed in an image in terms of a parse
graph y and model parameters Ω, ω for the grammar and MRF respectively.
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Model Description

• The observed image features are thus:

• Joint distribution over these features is computed by
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Explanation of Model Details

• Generating leaf nodes

• Generating the observable leaf nodes

• Generating the positions and orientations of leaf
nodes

• The appearance distribution

• The correspondence problem
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Generating Leaf Nodes

• Specifies how many AF’s are present in the images
• Output of y is the set of numbered leaf nodes
• Specified by a set of production rules:
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Generating the Observable Leaf Nodes

• Specifies whether objects are observable in the
image
– Occlusion or low detector response

• Observability of nodes is independent:

Parameter of Bernoulli distribution Delta Function
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Generating Position, Orientations of Leaf Nodes

• Distribution of the spatial positions z and
orientations Θ of leaf nodes

• Distribution is required (by authors) to satisfy
two properties
– Invariant to pose
– Easily computable

• Approximate by:

Constant

(Normal) Distribution over invariant shape vectors l
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The Appearance Distribution

• Appearances of background nodes are generated
from a uniform distribution

• Appearances of object nodes are generated by:

Normal Distribution with parameters
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The Priors

• All set to be uniform distributions
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Learning and Inference

• Inference. Estimate parse tree y from input x
– Parameters are fixed. Solve:
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Learning and Inference

• Parameter Learning. Model is known, but we need to
estimate parameters
– Estimate by MAP using EM:

• Structure Learning. Learning the model structure.
– Strategy is to grow the tree structure of PGMM by adding new aspect nodes

or adding new cliques to existing aspect nodes
– After adding something new, compute the score:
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Dynamic Programming

• Plays a key role in all three phases of learning in
PGMM

• In fact, structure of PGMM was designed so that
dynamic programming would be practical
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EM for Parameter Learning

• Use EM to estimate the parameters:

Define a free energy:
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EM for Parameter Learning

Gives the distribution of the aspects and correspondences, given the current
estimates of the parameters

M-Step:

E-Step:

Gives parameters given the current distribution of the aspects and
correspondences

Sum over all possible configurations
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Structure Pursuit

• Adding new triplets to the PGMM
– Use clustering algorithms to define a triplet vocabulary
– Triplet vocabulary is used to propose ways to grow PGMM
– Evaluated by how well PGMM fits data
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Experimental Results

• Inference algorithm is fast (under 5 seconds)

• Can learn and infer when pose varies

• Works on training datasets with both images with
object in it, and without object in it
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Experimental Results
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Experimental Results
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Experimental Results
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Backups/Reference
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Notation


