Computing the Physical Parameters of Rigid-body Motion from Video

Kiran S. Bhat, Steven M. Seitz, Jovan Popovic, and Pradeep K. Khosla

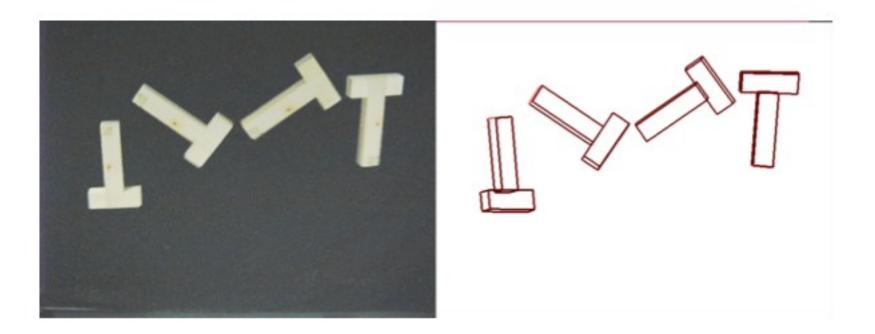
Presenter: Jinyan Guan

Overview

 This paper presents an optimization framework for estimating the motion and underlying physical parameters of a rigid body in free flight from video.

Problem Statement

• Goal: infer the physical parameters underlying the motion of the rigid body in free flight from a pre-recorded video sequence of its motion.



Simulating Motion of Rigid Body

- State q(t) of tumbling motion of a rigid body in free flight:
 - Position: $\mathbf{X}(t)$
 - Orientation: $\boldsymbol{\theta}(t)$ (in quaternion form)
 - Linear velocity: $\mathbf{V}(t)$
 - Angular velocity: $\boldsymbol{\omega}(t)$
- Simulation Function: $\mathbf{F}(t, \mathbf{q}(t))$

$$\boldsymbol{F}(t,\boldsymbol{q}(t)) = \frac{d}{dt} \left(\boldsymbol{q}(t)\right) = \frac{d}{dt} \begin{pmatrix} \boldsymbol{X}(t) \\ \boldsymbol{\theta}(t) \\ \boldsymbol{V}(t) \\ \boldsymbol{\omega}(t) \end{pmatrix} = \begin{bmatrix} \boldsymbol{V}(t) \\ \frac{1}{2}(\boldsymbol{\theta}(t) \ast \boldsymbol{\omega}(t)) \\ \boldsymbol{g} \\ -\boldsymbol{I}(t)^{-1} \left(\frac{d\boldsymbol{I}(t)}{dt} \boldsymbol{\omega}(t)\right) \end{bmatrix}$$
(4.1)

Approach

• Assumptions:

- Object shape and mass distribution are known (inertia matrix is known)
- Model:
 - Tumbling dynamics using ordinary differential equations (ODE)
 - State q(t): $q(t_f) = q(t_0) + \int_{t_0}^{t_f} F(t, q(t)) dt$
- Optimization:
 - Seeks to match the resulting motion with the frames of the video sequence.
 - Solve for $\mathbf{q}(t_0)$

Parameters

• Object:

- Intrinsic: object shape, mass distribution and center of mass
- Extrinsic: initial position, orientation, velocity and angular velocity
- Environment: gravity direction and air drag
- Camera:
 - Intrinsic: focal length, principle point, etc.
 - Extrinsic: position and orientation

Interested Parameters

• Object:

- Intrinsic: object shape, mass distribution and center of mass
- Extrinsic: initial position, orientation, velocity and angular velocity
- Environment: gravity direction and air drag
- Camera:
 - Intrinsic: focal length, principle point, etc.
 - Extrinsic: position and orientation

Estimating Parameters from Video

- Simulation parameters: $\mathbf{p} = (\mathbf{p}_{obj}, \mathbf{p}_{env}) \longrightarrow \mathbf{q}(t_0)$
- Solve for p by minimizing the least square error between silhouettes from video and silhouettes from the simulation on each frame.
- $(\mathbf{X}(t_0), \theta(t_0)), \dots, (\mathbf{X}(t_k), \theta(t_k))$ is the sequence of poses computed from a sequence of k frames.
- Objective Function for 3D data:

$$\min_{\boldsymbol{\omega}(t_0), \boldsymbol{v}(t_0)} \sum_{i=t_0, t_1...t_k} \left(\boldsymbol{X}(i) - \boldsymbol{X}^s(i) \right)^2 + \left(\boldsymbol{\theta}(i) - \boldsymbol{\theta}^s(i) \right)^2$$
(4.3)

Optimization

- Object function: shape-based metrics to compare the real and simulated motions
- Works offline and takes account of all frames
- For a given set of parameters, the optimizer simulates the motion to compute the bounding boxes and silhouette at each frame.
- They provide an initial estimate of the parameters and use a gradient descent to update it

Optimization

• Objective Function:

$$E = \min_{\mathbf{p}} \sum_{i=t_1, t_2...t_f} \left(\mathbf{S}^v(i) - \mathbf{S}^s(i, \mathbf{p}) \right)^2$$
(5.1)

• Update rule:

$$\mathbf{p} = \mathbf{p} + \lambda \frac{\partial E}{\partial \mathbf{p}}$$
(5.2)

Gradient Computation

• Use finite different to compute: $\frac{\partial S}{\partial p}$

- It's very slow
- Hard to determine a robust step size
- A hybrid approach:

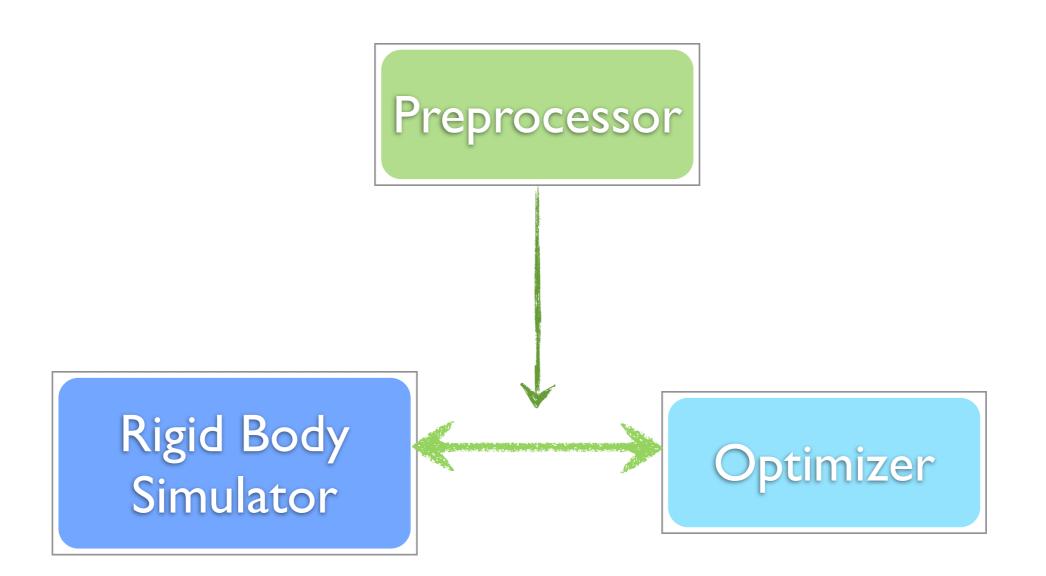
First, analytically compute: \$\frac{\partial q(t)}{\partial p}\$

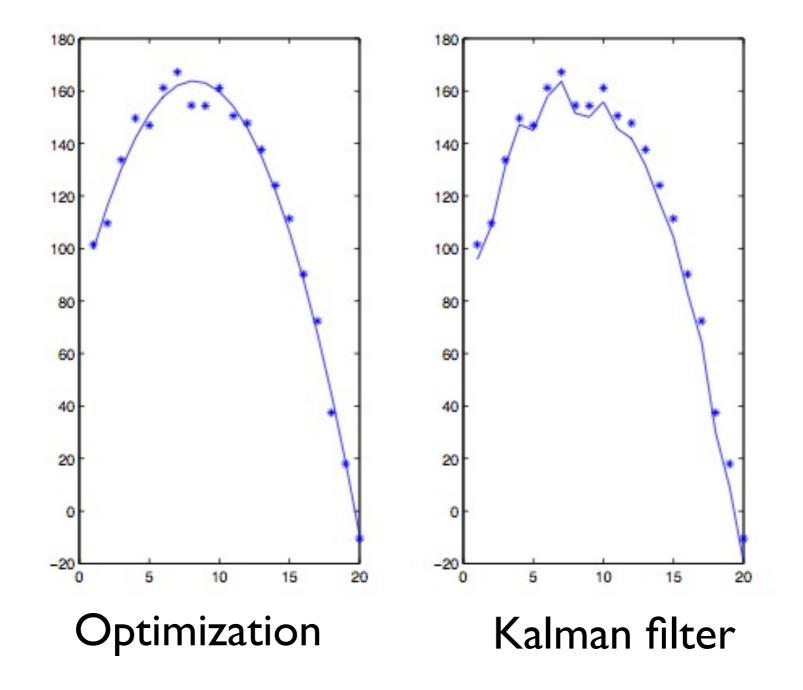
 Second, use finite difference compute \$\frac{\partial S}{\partial p}\$

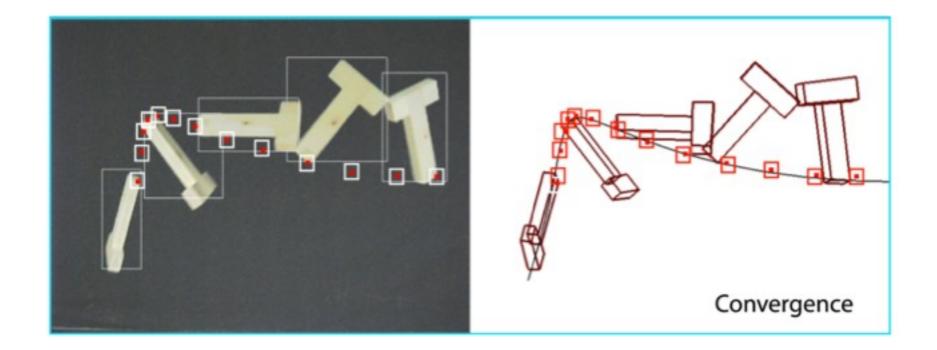
• Second, use finite difference compute
$$\overline{\partial \mathbf{q}}$$

• Use chain rule:
$$\frac{\partial \mathbf{S}}{\partial \mathbf{p}} = \frac{\partial \mathbf{S}}{\partial \mathbf{q}} \frac{\partial \mathbf{q}(t)}{\partial \mathbf{p}}$$

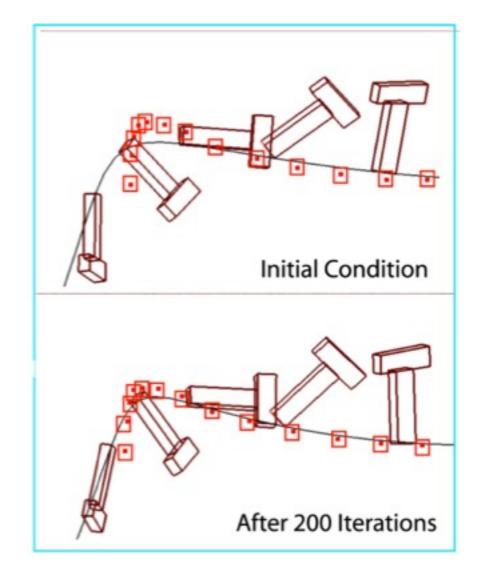
Overall Architecture



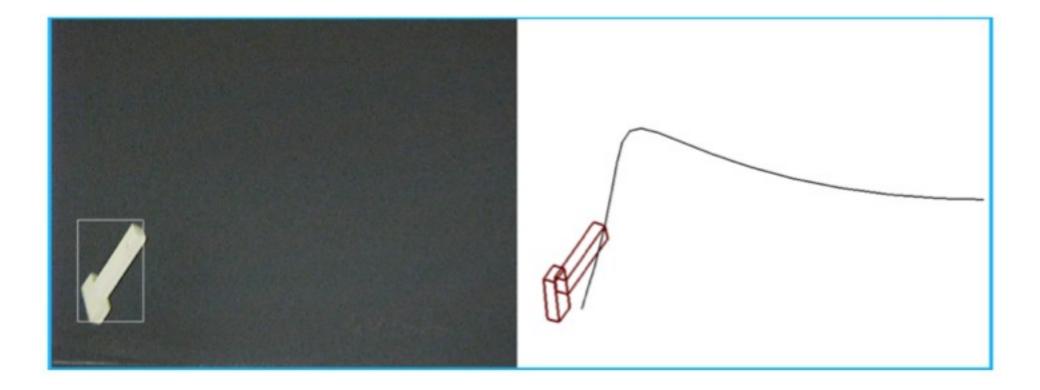




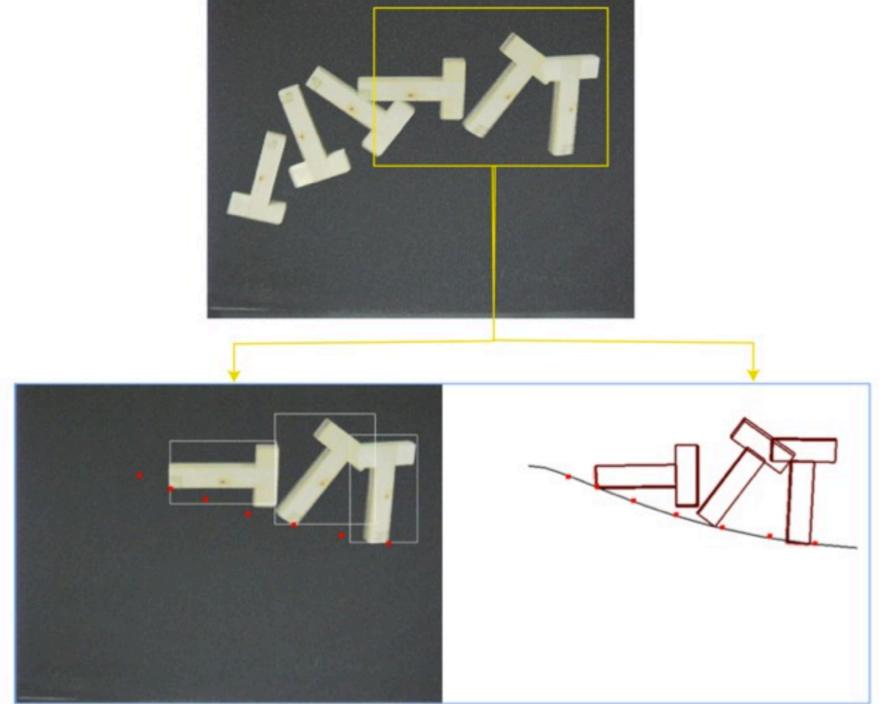
Frames from video and the corresponding physical simulation generated

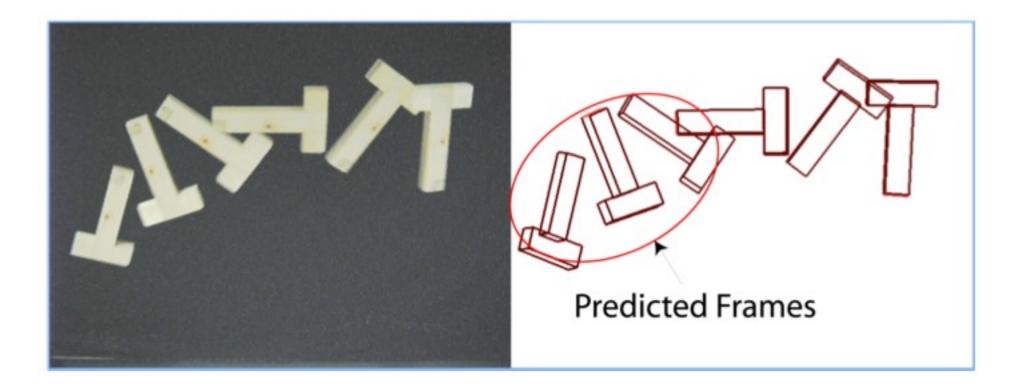


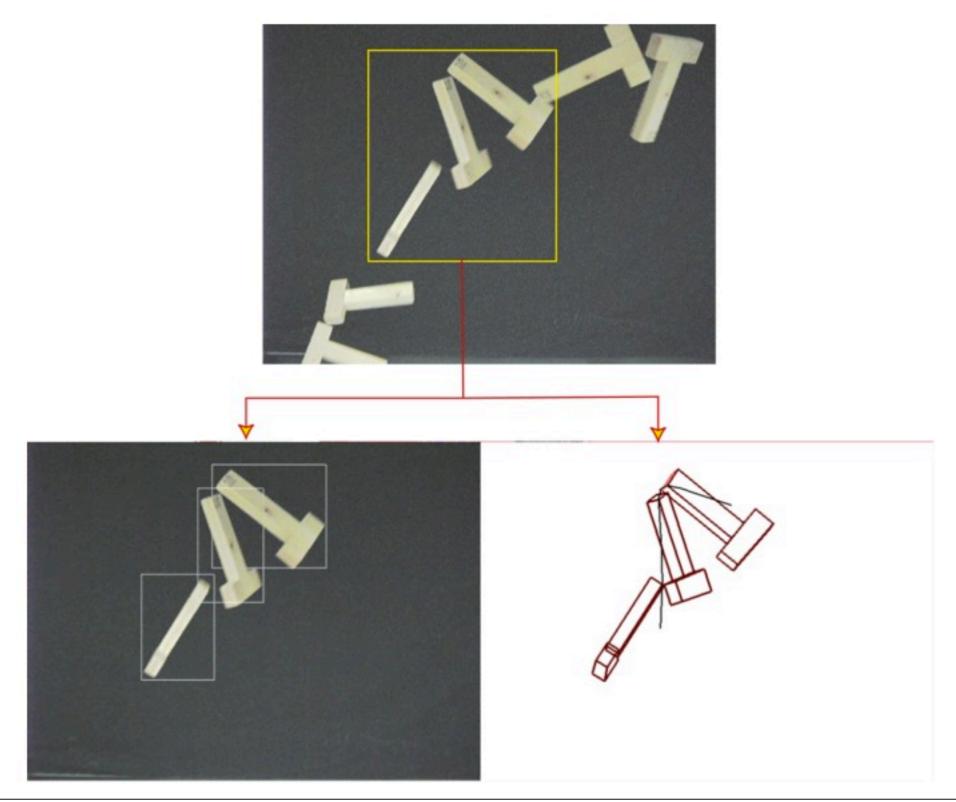
Different stages of optimization

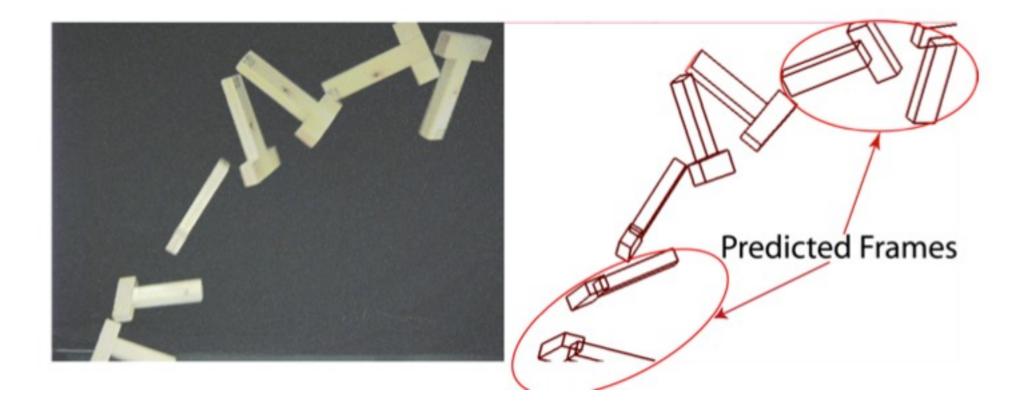


Limitation of silhouette based metric









Small error propagates to larger errors in the predicted frames

Correction for camera roll

Benefits of Estimating Physical parameters

- An accurate physical model actually **simplifies** the task of recovering kinematics.
- Enables the behavior of the object to be predicted in new or unseen condition.
- Allows to predict how the object would behave in different conditions

Questions?

Procedure

- Step I: Preprocess the video to obtain a background model of the scene.
- Step 2: Segment the moving object and compute the bounding box **B** and silhouette **S** at each frame.
- Step 3: Optimization