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L Introduction

MCMC Review

m Goal: To generate samples from an arbitrary probability
distribution
m Problem: Most distributions can't be sampled from directly.
m Problem: Many distributions are only known up to a scaling
constant
m Example: Bayesian models, p(D) is unknown.
m Solution: Markov Chain Monte Carlo
m Simulate a Markov Chain that converges to the target
distribution.
m After converging, all simulated states of the chain are samples
from the target distribution.

m Canonical Example: Metropolis-Hastings

Algorithm: Metropolis Hastings

Pick starting state, xg

Pick a new state, x1 g(x|zo)
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L Introduction

Issues with Metropolis Hastings

m Random Walk

Takes N? steps to move N steps away from initial state
Strategies:

m Gibbs Sampling

m Stochastic Dynamics

m Hybrid Monte Carlo

Not covered today

m Quasi-ergodicity

Recall: Ergodicity £ every state 2’ is reachable from any state
2 in a finite number of steps.

Def: Quasi-ergodicity - probabilitiy of moving from x to z’ is
non-zero but so small as to be effectively impossible.

Many deep local maxima

Sampler is likely to get caught and won't escape.

Focus of today's talk.
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Dealing with Quasi-ergodicity

m Simulated Annealing

m Deterministic cooling schedules

Adaptive cooling schedules

Restarting

Simulated Tempering (a.k.a. Serial Tempering, a.k.a.
Umbrella Sampling)

m Replica Exchange (a.k.a. Parallel Tempering)

m Stochastic Tunneling
m Others (Not covered today)

m Jump Walking
m Smart Walking
m Cool Walking

m Smart Darting
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Statistical Physics

m Most techniques discussed today have roots in statistical
physics.

m Traditional Formulation: Given some probability
distribution, p(z), find the state 2* with the maximum
probability.

m Statistical Physics Formulation: Given some potential
energy function U(x), find the state z* with lowest energy.

m Example: Molecular dynamics - given a system of N
molecules, find low-energy crystal configurations.
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Traditional vs. Statistical Physics Formulations

m Physical formulation is analagous to Traditional formulation
m Boltzman distribution for MD:

ple) = Z(1)e U/

m Each of these terms has an analogue in the traditional

formulation.
m U(x) = “potential function”.
m Proportional to the negative log probability.
B Minimizing U(z) = maximizing p(z).
m When U(z) is quadratic, p(z) is a Gaussian distrubution.
m T = system's “temperature”.
m Informally, a “sharpness” parameter (more on this later).
m Represents variance when p(z) is Gaussian.
m Z(T) = "partition function”, i.e. normalization factor.
m Often unknown, but in most MCMC scenarios not needed
(we'll see an exception).
m In Bayesian models, it contains the unknown p(D) in the
denominator of Bayes' Rule.
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L overview

Simulated Annealing - General ldea

m Def: Annealing - a metalurgic process of cooling hot metal
slowly to increase it's ductatility and relieve internal stresses.

m Recall that temperature is a measure of the speed of
molecules/atoms in the system.

m During cooling, fast-moving atoms slow down and lose energy.

m In fast cooling, motion of atoms is halted before they can find
a low-energy state.

m By decreasing temperature slowly, atoms have time to find
low-energy states while they are still fairly mobile.

m We can model this system statstically.
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L overview

Simulated Annealing (ctd.)

m Let X be the position and momentum of all molecules in a
system.

m Let H(z) be the the system's energy in configuration x.

m Let T be the system’s temperature.

m The exact position and momentum of all molecules is
unknowable.

m But we can model them probabilistically as

p(z) = Z(T)e' — H(z)/T)

m Note that increasing the temperature “irons out” the peaks in
the distribution.
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L overview

Simulated Annealing (ctd.)

m If “hotter” systems move around more quickly, we can use this
to improve sampling.
m To explore: Increase the temperature T' to smooth out wells.
m To find minima: Decrease T to make wells deeper.
m (Demo)

m In traditional formulation: raise all probabilities to 1/T":

p(x) = p(a)'/"

m General algorithm: Start with high temperature T and
decrease throughout sampling.

m Def: Cooling Schedule - Defines how temperature changes
as a function of time.

m Performance depends heavilly on a good cooling
schedule.
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Simulated Annealing - Deterministic Cooling schedules

m Trivial Schedule: if Ty = inf and 77 = 0, algorithm becomes
gradient descent.
m Optimal Schedule: (under certain conditions)
T, = Tp/ log(t), for t >0
m Takes much too long to cool to T' = 0.
m Usually worse than exhaustive search (which is, itself,
intractible).

o BB Y8

0 100 200 300 400 3500

m Another commonly used schedule: Ty = oT;.
m « usually chosen by hand.
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Simulated Annealing - Adaptive Cooling Schedule

m ldea: Adapt the cooling schedule based on the state of the
Markov chain.

m Constant Rate of Entropy Reduction

“Peakiness” of a distribution is measured by entropy.

Idea: Entropy should change smoothly and linearly.

Rate of entropy reduction: % = C

C' the heat capacity of the system C =var(E)/T?

var(E): the variance of the energies at the current

temperature.
m Cooling Schedule: T; — T;,; «c T/C = T3 /var(E)

Algorithm: Cooling with Constant Rate of Entropy Reduction

Sample for a while at fixed temperature ;.
Find variance of sampled energies.
Reduce temperature by 7% /var(E)
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Restarting

m Problem: In simulated annealing, bad samples can get caught
it deep wells if temperature drops too fast.

m ldea: "“If you hit a dead end, start over”

Simulated Annealing with Restarting

Perform simulated annealing as usual.

Keep track of best model and its energy throughout sampling.
If restarting criterion is met,

Replace current model and energy with the best
Restart the annealing schedule

m “Restarting criterion” — various options

m Restart when quality of samples has dropped too far below the
best.
m Restart randomly.
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Simulated Tempering

m Simulated Tempering: continuously jump between higher
and lower temperature states.

m Samples don't get caught in deep wells.
m Obviates the need for hand-built cooling schedule.
m Temperature is now part of the model; it is a parameter that
is sampled over.
m A new temperature is proposed, and accepted with Metropolis
probability:

min {1, ?(?3 exp{—AH}}

m Z(T;) is the normalizing constant for temperature T;
m AH =E(1/T; - 1/T;)
m Problem: Z(T;) is usually unknown
m “These constants can be preliminarily estimated by an
iteration procedure.” (Cong, et. al., 2002)
m Could assume it doesn't change much, and ignore it?
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Parallel

nnealing

Tempering (Replica Exchange)

Parallel Tempering: Simulate multiple chains in parallel, and
allow them to exchange temperatures.

Probability of accepting a temperature swap:
REORY O U I
min {1, e(El EJ)(‘“TZ' kTi) }

A popular extension to simulated tempering (serial
tempering).

Unlike serial tempering, no need for normalization factor (but
it's unclear why).

Mixes faster than just running two chains in isolation.
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Stochastic Tunneling

m Instead of flattening out all wells, why not just flatten the
ones shallower than the deepest one found so far?

m Transform the potential function:
[ (@) =1 —exp(—(f(z) — fo))
m Note that the location of minima are unchanged.
m Depth of shallow wells are even shallower.
m Deep wells become deeper.
m Prevents re-exploring areas, avoids random walk somewhat.




