Tracking People by Learning Their Appearance

Developed by Deva Ramanan, David Forsyth & Andrew Zisserman

Presenter: Jinyan Guan 09/10/2010

- Motivation
- Approach Overview
 - Model representation
 - Model learning
 - Model detection
- Advantages
- Demo

- Motivation
- Approach Overview
 - Model representation
 - Model learning
 - Model detection
- Advantages

• Demo

- Action recognition
- 3D pose estimation & reconstruction

Tracking People is Hard

- People move fast and unpredictably
- One can appear in variety of poses & clothes, and surrounded by limblike clutter

Common Approach of Tracking

Hidden Markov Model

$$P(X_{1:T}, I_{1:T}) = \prod_{t} P(X_t | X_{t-1}) P(I_t | X_t)$$
$$X_{1:T} = \{X_1, ..., X_t\}$$
Likelihood Model

 Tracking corresponds to inference on this HMM: Given a sequence of images, find the MAP sequence of poses.

Why Tracking by Learning the <u>Appearance?</u>

- Tracking by capturing the motion of people
 - What if the background moves rather than the people?
- An uninformative prior on motion (dynamics) models may cause the tracker to drift.
- Once the tracking fails, it has to be manually reinitialized.

- Motivation:
- Approach Overview
 - Model representation
 - Model learning
 - Model detection
- Advantages

• Demo

"Tracking by Detecting" Overview

 Step I: Build a model of appearance of each person from a sequence of frames- learning the appearance

 Step 2:Track the person by detecting those models in each frame

- Motivation:
- Approach Overview
 - Model representation
 - Model learning
 - Model detection
- Advantages

• Demo

Model representation

- How to represent people's appearance?
- Pictorial Structure:
 - Model the human body as a puppet of rectangles

Temporal Pictorial Structure

at time t

torso-lua assembly

from I:t time

- Motivation:
- Approach Overview
 - Model representation
 - Model learning
 - Model detection
- Advantages

• Demo

Build the Models

- Bottom-up: group together candidate body parts found throughout a sequence of frames.
- Top-down: automatically build peoplemodels by detecting *convenient* key poses within a single frame

Bottom-up Approach: Clustering

- Looks for candidate in each frame
- Cluster the candidates to find assemblies of parts that might be people.

Clustering Steps

- Detect Candidate parts in each frame with an edge-based part detector
- *Cluster* the resulting image patches to identify body parts that look similar across time
- Prune clusters that move too fast in some frames and those do not move.

Learning a Model of Torso Appearance

Learning Multiple Appearance Models

Candidate arms

- Motivation:
- Approach Overview
 - Model representation
 - Model learning
 - Model detection
- Advantages

• Demo

Graphical Model P. \mathbf{P}_2 PT С PT P P. I, P (a) (b) (c) TN $P\left(P_{1:T}^{1:N}, I_{1:T}|C^{1:N}\right) = \prod \left(P\left(P_{t}^{i}|P_{t-1}^{i}\right)\right) P\left(P_{t}^{i}|P_{t}^{\pi(i)}\right) P\left(I_{t}|P_{t}^{i}, C_{i}\right)$ tiImage Likelihood **Motion Model Spatial Kinematics**

Model Detection

- Finding an optimal track given a video sequence corresponds to find the MAP estimate of C_t^i and P_t^i
- Exact inference is difficult because of loops and large state spaces of variables.
- Approximate inference: Ignore the loops and pass local messages

torso-lua assembly

Approximate inference

(a)

(c)

(d)

torso -> lower-arm -> upper-arm ...

Building a Model of Arms and Legs

Bottom-up Detection is Hard

<u>Top-down Model: Building</u> Models with Stylized Detectors

- Opportunistic detection
- Convenient poses:
 - I) Easy to detect.
 - 2) Easy to learn appearance from, such as lateral walking.

Detect a Stylized Person Detector

• Use a single-frame pictorial structure model:

λT

$$P\left(\mathbf{P}^{1:N}, I | C^{1:N}\right) = \prod_{i}^{N} P\left(\mathbf{P}^{i} | \mathbf{P}^{\pi}(i)\right) P\left(I | \mathbf{P}^{i}, C^{i}\right)$$

- $P(\mathbf{P}^i | \mathbf{P}^{\pi}(i))$: manually set the kinematic shape potential.
- P(I|Pⁱ, Cⁱ): use a chamfer template edge mask.

Lateral-walking Pose Finder

Discriminative Appearance Models

- Assume each limb detector is (more or less) color constant.
- Then we can train a quadratic logistic regression classifier in RGB space.

Tracking by Model Detection

- Given either model building method (bottom-up or top-down), we can build a representation (either a template patch or a classier) of a specific person.
- Multiple scales: The system searches this representation over an image pyramid.

An Overview

- Motivation:
- Approach Overview
 - Model representation
 - Model learning
 - Model detection
- Advantages

<u>Advantages</u>

- Track people with automatic initialization in front of complex backgrounds.
- Track people that standing in front of moving backgrounds.
- Two model-building algorithm are complementary.
- Initial detection can be done opportunistically.

• Motivation:

- Why "tracking by learning appearance"?
- Approach Overview
 - Model representation
 - Model learning
 - Model detection
- Advantages

• Demo

<u>Demo</u>

<u>Demo</u>

<u>Demo</u>

Questions?