Geometry of Single Axis Motions Using Conic Fitting

Guang Jiang, Hung-tat Tsui, Long Quan, Senior Member, and Andrew Zisserman

Tutorial presentation by Kyle Simek

Motivation

- Camera calibrations tells us where 3D points appear in an image.
- Calibrated cameras give us more information about a scene.
- Algorithms requiring calibration
- Stereo reconstruction
- Visual Hulls
- Augmented Reality
- Problem: Manual calibration is tedious
- Requires at least six correspondences between 3D points and their projection in an image.
- More points are desirable to mitigate noise.

Auto-calibration

- Image sequences are particularly tedious to calibrate.
- Goal: infer some camera calibration parameters automatically in image sequences.
- Correct up to a similarity transformation.
- Can't know global scale (is it a toy dinosaur or a real one?)
- Can't know global position (is it in Gould-Simpson or Antarctica?)
- Exploit data redundancy/locality
- Exploit knowledge of camera motion geometry.
- We will focus on turntable sequences.

Turntable Geometry

- Pure rotation around a screw axis.
- Assume z-axis
- Off-center from camera.
- No translation.
- m angles $\theta_{0} . . . \theta_{m}$
- Not necessarily uniform.
- Intrinsic parameters remain constant.

- Camera extrinsics: 4 (2 position and 2 direction)
- Camera intrinsics: 4 (usually 5 , but global scale is unknown)
- Rotation Angles, $\theta_{0} \ldots \theta_{m}$: m
- Total: $8+m$ (much better than 11 m in the general case!)

Turntable Geometry

- Object motion exhibits unique behavior.
- Observation 1: All object points travel in circular paths in 3D.
- Appear as ellipses in the image due to projection
- Observation 2: Circular paths slice 3D space into parallel 2D horizontal planes.
- What do we know about projected circles?
- What do we know about parallel planes?

Lets review some In 2D projective geometry!

- Parallel lines intersect at the Line At Infinity, $l_{\infty}=(0,0,1)$
- All circles intersect (imaginary) circular points, $\boldsymbol{i}, \boldsymbol{j}$.
- $\boldsymbol{i}=(1, i, 0) ; \boldsymbol{j}=(1,-i, 0)$
- Circular points lie on l_{∞},
- Projective transform maps line at infinity and circular points into the image plane

Review: Metric Reconstruction

1. Finding the line at infinity in the image, l_{∞} ' we can map it back to l_{∞} to restore affine properties (e.g. parallelism)

1D ambiguity remains in line mapping
2. Mapping circular points back to canonical position restores metric properties (e.g. angles, length ratios)

Note: Still won't know scale.

Turntable Geometry

- Observation 1: All object points travel in circular paths.
- Ellipses in image.
- Observation 2: Circular paths slice 3D space into parallel 2D horizontal planes.
- ALL PLANES HAVE SAME LINE-AT-INFINITY
- Thus, same circular points
- Find these features, and reconstruct the horizontal planes.

Fitting Ellipses

- Assume: we can track object points reliably.
- Goal: fit ellipses to point tracks
- Q: How many points uniquely define a conic?
- $A x^{2}+B x y+C y^{2}+D x+E y+F=0$
- 5 equations, 5 unknowns
- Only need tracks of length 5
- e.g. Find sift keypoints, find

Example point tracks. nearest neighbor within a window.

- Next: Find circular points.

Finding Circular Points in Image

- Key Idea 1: Since all circles intersect the circular points, and projective transforms preserve intersections, a projected circle (i.e. ellipse) should intersect the projected circular points.
- Key Idea 2: Since all elliptical tracks are parallel, they all share the same circular points.
- Find the unique points where all ellipses intersect each-other.
- How can ellipses intersect?

Pop quiz!

- How many times do two conics intersect?
- How many (real) intersections can two ellipses have?

Elliptical intersections

- Recall: all conics intersect at exactly four points (including duplicates, and imaginary or infinite points).
- How many (real) intersections can two ellipses have?
- Four intersections.
- Not possible in our configuration.
- Two intersections

- Could be a single intersection duplicated
- Other two are imaginary, complex conjugates
- circular points!
- Zero intersection
- Two pairs of complex conjgates
- Either pair could be the circular points
- Resolve with a third conic.

Summary So Far

- So far we have:

1. Extracted point tracks
2. Fit ellipses to point tracks
3. Found circular points of the ground plane.

- Thus, also the line at infinity
- With this, we can reconstruct the horizontal directions
- i.e. we can make the ellipses back into circles
- Still have projective ambiguity in vertical direction.
- i.e. We don't know the circles' relative sizes (similarity ambiguity)
- Ultimately, we still don't know:
- Rotation angles $\theta_{0} . . . \theta_{m}$
- Camera Matrix
- Both can be found by finding image of the circle's center.

Finding Circle's center in the Image

- Knowing l_{∞} and an elliptical conic \boldsymbol{C}, we can find the circle center o.
- (remember, \boldsymbol{C} is a 3×3 matrix representing
 the 5-parameter conic)
- Key Idea: Poles and Polars
- 1 to 1 mapping from a point p to a line l w.r.t. a circle \boldsymbol{C}.
- Equation: $p=C^{-1} l$
- Demo: http://www.cut-the-knot.org/Curriculum/Geometry/PolePolar.shtml
- Pole at circle center \rightarrow polar line at infinity.
- Poles/Polars are invariant under projection.
- The projected circle center is the pole corresponding to ellipse \boldsymbol{C} and polar line l_{∞}.
- Equation: $o=C^{-1} l_{\infty}$

Finding Camera Matrix

- Recall: Camera calibration requires at least 6 3D points and corresponding 2D image points.
- We can get these points from our ellipses.
- First, we set up the x and y axis.
- Recall that points at infinity can be interpreted as a direction vector.
- Pick any point along l_{∞}. This is x_{∞}, the direction of the x -axis.
- To find y_{∞}, we need to find vector in ground plane perpendicular to x_{∞}.
- Poles and polars to the rescue! (Demo on board)
- $L_{y}=C x_{\infty}$,
_ L_{y} intersects l_{∞} at y_{∞}.
- Now we have a coordinate system: x_{∞}, y_{∞}, and L_{s} (the turntable axis)
- Lets pick some 3D coordinates...

3D \rightarrow 2D Correspondences

- Choose any two ellipses, C_{1} and C_{2}.
- Set z-coordinate of C_{1} be zero.
- Find intersection of Ix, and ly with circle
- These correspond to 3D points ($r_{1}, 0,0$),

$$
\left(-r_{I^{\prime}}, 0,0\right),\left(0, r_{I^{\prime}} 0\right),\left(0,-r_{I^{\prime}} 0\right)
$$

- Set z-coordinate of C_{2} to be h and repeat.

(all points in inhomogeneous coordinates)
- Gives $\left(r_{2}, 0, h\right),\left(-r_{2}, 0, h\right),\left(0, r_{2}, h\right),\left(0, r_{2}, h\right)$.
- Add point (0,0,0) and ($0,0, h$) - 10 total point correspondences.
- Good enough to calibrate!

Projective Ambiguity

- Result:

$$
\mathbf{P}=\left(\begin{array}{llll}
p_{11} & p_{12} & \frac{1}{h}\left(r_{1} k_{131}+r_{2} k_{132}\right) & r_{1} k_{14} \\
p_{21} & p_{22} & \frac{1}{h}\left(r_{1} k_{231}+r_{2} k_{232}\right) & r_{1} k_{24} \\
p_{31} & p_{32} & \frac{1}{h}\left(r_{1} k_{331}+r_{2} k_{332}\right) & r_{1} k_{34}
\end{array}\right)
$$

- Three unknowns:
- Two circle radii: r_{1} and r_{2}.
- Height of circle 2: h
- One is accounted for by unknown scale.
- Other two are due to inherent projective ambiguity in Z-axis.
- Assuming square pixels often resolves this.
- Absent any prior knowledge, of these are equally likely:

Finding Turntable Angles

- We've found the camera, but we still don't know the rotation angles $\theta_{0} \ldots \theta_{m}$.
- Can be found from circle center and circular points.
- Let a, b be the image coordinates of the same object point in two consecutive time-steps.
- Laguerre's formula gives the angle between them:
$\theta=1 / 2 i \log \left(\left\{l_{o d} l_{o b} ; l_{o i} l_{o j}\right\}\right)$
- $l_{o a} l_{o b}$ are line segments from the circle center ((o) to a and b
- $l_{o i} l_{o j}$ are line segments from the circle center to the circular points
- $\{A, B ; C, D\}$ represents the cross-ratio:
- (A-C)(B-D) / (B - C)(A-D)
- This way, all angles can be recovered from pairs of imaged points.

Summary

1.Find tracks of 5 points
2.Fit ellipses to tracks
3.Find circular points and line at infinity
4. Find circle centers
5.Define X and Y axes
6.Extract 3D \rightarrow 2D correspondences
7.Calibrate
8.Find angles using Laguerre's formula.

Extensions

- Using only two conics doesn't handle noise well.
- Alternative: use many conics, and fit them using maximum likelihood estimation.
- Reconstruction of 3D models
- Knowledge of cameras permits a Shape-fromsilhouette reconstruction.

