Using ${ }^{\wedge}$ for quantities estimated from data, $E()$ for expected value, $u()$ for mean, and $\square^{2}()$ for variance. By definition:

$$
u(X)=E(X)
$$

So estimate by:

By definition
$\square^{2}(X)=E(X \square u)^{2}$
Assuming equal weights, and that u is known exactly we estimate this by:
$\square^{2}(X)=\square_{i}\left(X_{i} \square u\right)^{2} p(x)=\square_{i}\left(X_{i} \square u\right)^{2} \square \frac{1}{\square} \square=\frac{1}{n} \square_{i}\left(X_{i} \square u\right)^{2}$
Normally, u is not known exactly, and you need to use \hat{u} instead. Consider for a moment the variance of \hat{u}. First recall the formula for the variance of a linear combination of random variables (easily derived from the definition of variance as an expectation):
$\square^{2} \square_{i}^{\square} a_{i} X_{i} \stackrel{\square}{\square}=\square_{i}^{\square} a_{i}^{2} \square^{2}\left(X_{i}\right)$
This can be applied to the formula for \hat{u} above to get
$\square^{2}(\hat{u})=E(u \square \hat{u})=\square_{i} \square^{2}\left(X_{i}\right), \frac{\square}{n} \square^{2}=n \frac{\square^{2}}{n^{2}}=\frac{\square^{2}}{n}$
Now, back to Π^{2}. Recalling that variance is additive (verified by algebra using the appropriate independence assumption):
$\square^{2}(X)=E(X \square u)^{2}=E(X \square \hat{u})^{2}+E(u \square \hat{u})^{2}$
Plugging in the result for the variance of the mean above:
$\square^{2}(X)=E(X \square \hat{u})^{2}+\frac{\square^{2}}{n}$
Yielding the estimate:
$\square^{2}(X)=\frac{n}{\square \square \square 1}-E(X \square \hat{u})^{2}$
And finally, we would use the estimate of $\square^{2}(X)$ in the estimate of $\square^{2}(\hat{u})$:
$\square^{2}(\hat{u})=\frac{\square^{2}(X)}{n}$

This review has set us up for the derivations of the like quantities in the case of a weighted estimate. Note that any formula below must give the above answers if we use $w_{i}=\frac{1}{n}$. By definition:
$u(X)=E(X)$

So estimate by:
$\hat{u}(X)=\square_{i} X_{i} p(x)=\square_{i} X_{i} w_{i} \quad$ (arbitrary weights)

Again by definition:
$\square^{2}(X)=E(X \square u)^{2}$
Assuming u is known exactly we estimate this by:
$\square^{2}(X)=\square_{i}\left(X_{i} \square u\right)^{2} w_{i}=\square_{i}\left(X_{i} \square u\right)^{2} w_{i}$
(This is in fact what we do in the formulas in Assignment 2, to keep things simple).
To derive the analog to the correction by $\frac{n}{\square n \square 1}$ in the weighted case, again consider the variance of \hat{u}.
$\square^{2}(\hat{u})=E \square_{i}^{\square} X_{i} w_{i} \square_{\square}^{\square}=\square_{i}^{2}\left(X_{i}\right) w_{i}^{2}=\square^{2}(X) \square_{i} w_{i}{ }^{2}$
As above:
$\square^{2}(X)=E(X \square u)^{2}=E(X \square \hat{u})^{2}+E(u \square \hat{u})^{2}$
Plugging in the result for the variance of the mean above:
$\square^{2}(X) \square \square \square_{i}{ }^{2} \stackrel{\square}{\square}=E(X \square \hat{u})^{2}$
Rearranging:
$\square^{2}(X)=\frac{E(X \square \hat{u})^{2}}{\square \square \square w_{i}{ }^{2} \square}=\frac{\square w_{i}\left(X_{i} \square \hat{u}\right)^{2}}{\square \square \square w_{i}{ }^{2} \square}$

Finally, we can use the estimate of $\square^{2}(X)$ to estimate $\square^{2}(\hat{u})$:
$\square^{2}(\hat{u})=\square^{2}(X) \square_{i} w_{i}{ }^{2}$

