ISTA 352
Lecture 8
Finish tutorial on linear algebra and Digital representation of image data

Administrivia

- HW one due tonight
- HW two now posted
- Today includes some material needed for HW two
- Bonus demo today in GS 906 at 1:00

Linear functions (quick recap)

- The usual compact formula defining a linear transformation
 \[f(a \cdot L_1 + b \cdot L_2) = a \cdot f(L_1) + b \cdot f(L_2) \]

- Matrix multiplication implements linear functions on vectors

- Geometrically, linear functions map lines to lines

- Associativity of matrix multiplication means that we can construct complex linear transformations from sequences of elementary ones

Transformation examples in 2D

- Scale (stretch) by a factor of k

\[M = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} \quad (k = 2 \text{ in the example}) \]
Transformation examples in 2D

- Scale by a factor of \((S_x, S_y)\)

\[
M = \begin{bmatrix}
S_x & 0 \\
0 & S_y
\end{bmatrix} \quad \text{(Above, } S_x = 1/2, S_y = 1)\
\]

Orthogonal Transformations

- Orthogonal transformations are defined by \(O^T O = I\)
- Also have \(|\det(O)| = 1\) (*)
- Rigid body rotations and mirror “flip”

* If you are not familiar with determinants, do not worry about it. We will not be using them in this course.

Transformation examples in 2D

- Mirror flip through y axis (Orthogonal)

\[
M = \begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}
\]

Transformation examples in 2D

- Rotate around origin by \(\theta\) (Orthogonal)

\[
M = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix} \quad \text{(Above, } \theta = 90^\circ)\
\]

This looks like a rotation out of the page, but it is actually a bit different because which side is facing you changes in the one case but not the other.
2D Transformations

- Translation \((P_{\text{new}} = P + T) \)

There is no 2x2 matrix that works!

Homogenous Coordinantes

- Represent 2D points by 3D vectors
 - This representation is called homogeneous coordinates

- To create a 3D vector from a 2D point we add “1” as the third coordinate
 - \((x,y)\rightarrow(x,y,1)\)

- To convert homogeneous to regular coordinates
 - \((x,y,W)\rightarrow(x/W, y/W, 1)\) (and ignore the last coordinate)

- Note that a multitude of 3D points \((x,y,W)\) represent the same 2D point

- Homogeneous coordinates for 3D points work analogously
 - \((x,y,z)\rightarrow(x,y,z,1)\)
 - \((x,y,z,W)\rightarrow(x/W, y/W, z/W, 1)\)

Homogenous Coordinates (2)

- Basic transformations are easy to derive (examples coming up)

- We can implement translation by matrix multiplication

- More importantly, we can also implement represent perspective projection matrix multiplication

- This means all operations needed for image construction can be chained together into one matrix (recall that matrix multiplication is associative)

2D Scale in H.C.

\[
M = \begin{bmatrix}
S_x & 0 & 0 \\
0 & S_y & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
2D Rotation in H.C.

\[M = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

2D Translation in H.C.

- \(P_{\text{new}} = P + T \)
- \((x', y') = (x, y) + (t_x, t_y) \)

\[M = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \]

Digital representation of images
Vector vs raster representation

- Raster representation of an image (very familiar)
 - Array of values indexed by spatial coordinates
 - image(i,j) = intensity encoding (BW/gray scale)
 - image(i,j) = color encoding, e.g., (R,G,B)
 - Makes sense as an encoding of sensor array data
 - Digital cameras, scanned photos
 - Suffers quantization errors, fixed “true” resolution
 - Resolution can be lost during transformation

- Vector representation
 - Prescriptive code to generate images
 - Examples
 - A line segment with endpoints (x1,y1) and (x2, y2)
 - Text string to insert at a particular location
 - Can be very compact
 - Resolution is not an issue as image is generated from potentially very accurate data as needed
 - Natural and effective for computer generated material
 - Examples
 - Common modern example is a PDF file (except for embedded raster encoded material)
 - Historical example is the very earliest days of graphics where data to displays was in the form of line segments

How many bits for color images

- 3x256 bits is close to enough
 - Provisos
 - Using a good non-linear transfer function (gamma)
 - Three channels does not quite provide full color fidelity
 - This is not a “number of bits issue”
 - We will understand this ... later!

- Definition of enough
 - If, under the optimal transfer functions, any two colors are barely distinguishable then adding more colors resolution will not help
 - Humans can distinguish about 10 million colors (ignoring brightness) under laboratory conditions
 - So, 2^{3*8} is in the right ball park

Aside on color versus chromaticity

- Color consists of brightness and chromaticity
- In a 3D color space, chromaticity is 2D
Aside on color versus chromaticity

- Color consists of brightness and chromaticity
- In a 3D color space, chromaticity is 2D
- Brightness is a special dimension in a color space
 - The range in nature is very large
 - Imaging systems adjust the range by controlling the aperture and other means
 - Displays cannot reproduce the range of brightness that our visual system can distinguish (within a given range)
- If we want to store captured colors with a large brightness range, especially if we want purely linear data, more than 8 bits per channel can make sense
 - Typical data format is 16 bit tiff or floating point formats

Concepts to keep separate

- Color range that can be represented or displayed
 - Later we will learn that you can see colors that a typical RGB system does not represent and typical monitors cannot display
- Color resolution (number of colors)
 - Adequate number is driven by “just noticeable differences”
- Optimum step size between neighboring colors
 - As colors become brighter, the energy difference between just noticeable differences decreases.
 - This justifies keeping “gamma” where physical meaning of the values goes through a non-linear function.

Pure vs indexed color

- 3x256 bits used to be a lot when memory and disk space was expensive
- Indexed color works with a color “palette” of a limited number of colors
- Each array element is instead an index into the color map
 - For example, if our palette is 256 colors, then we use one byte per pixel instead of three.
 - 16 colors cuts the memory footprint down to 4 bits per pixel
- Now that memory/disk is cheap should one care?
 - The concept of a color map persists in many places