ISTA 352

Lecture 6

Tutorial on linear algebra (II)

Linear functions

- Sensor response is linear
 - Scaling the input results in scaling the output by the same factor
 - f(a*x)=a*f(x)
 - The output of a sum of two things is the sum of the output of each individually
 - f(x+y)=f(x)+f(y)
- The usual compact formula

$$f(a*\mathbf{L_1} + b*\mathbf{L_2}) = a*f(\mathbf{L_1}) + b*f(\mathbf{L_2})$$

Linear functions

- Recall notation from last lecture on camera sensors
 - L is light energy as a function of wavelength
 - $-\mathbf{R}^{(k)}$ is energy capture sensitivity as a function of wavelength

The response is given by $\rho^{(k)} = f_{R^{(k)}}(\mathbf{L}) = \mathbf{R}^{(k)} \cdot \mathbf{L}$

The particular senstivity, $\mathbf{R}^{(k)}$, leads to the function of L, specifically $f_{\mathbf{R}^{(k)}}(\mathbf{L})$.

In what follows, we will just call it $f(\mathbf{L})$ ($\mathbf{R}^{(k)}$ is implicit)

Linear functions

- A function imposed by a dot product is linear
 - easy to prove with algebra
- Linear functions on a vector are dot products
 - easy to prove by writing a vector as linear combination of basis vectors
- Matrix-vector multiplication
 - Our dot product function mapped vectors to numbers (one component)
 - Stacking dot products to get multiple components leads to matrix-vector multiplication
 - It is not hard to show that $f(\mathbf{v})=M^*\mathbf{v}$ is linear
 - Example, computing (R,G,B), not just R or G or B.

Linear functions (points of confusion)

- The formula is general, but we will apply it to vectors
- The formula requires a scalar multiplication operator, and an addition operator, which we inherit from vectors
- The vectors are abstract---what they represent depends on context
 - Notice that \mathbf{x} and $f(\mathbf{x})$ can have similar **or** different meanings
 - In this course, we will use at least three meanings
 - Spectral values (as a function of wavelength)
 - Channel intensity (R,G,B)
 - · Spatial location

Uses of linear (and affine) operators

- Mapping points from one place to another
 - e.g., rotate a square by mapping it its corners
- Rewrite coordinates in terms of another basis (*)
 - Standard situation is our new basis is transformed version of our current basis
 - Here rewriting is the inverse of the transformation
 - If you shift a coordinate system to the right (increasing x), the new coordinates do the opposite (x decreases)

Linear functions (points of confusion)

- The simple transformation (*) of translating a point in space is
 NOT a linear function
 - Easy to show using the formula
 - Reasonable linear transformations satisfy f(0)=0
 - The technical term for linear followed by translation is "affine"

* Kobus will use the words "function", "transformation", and "mapping" as synonyms in this course. In addition, "linear operator" is a linear map.

Transformation examples in 2D

• Scale (stretch) by a factor of k

$$\mathbf{M} = \begin{vmatrix} \mathbf{k} & \mathbf{0} \\ \mathbf{0} & \mathbf{k} \end{vmatrix}$$

(k = 2 in the example)

^{*} In this course, our bases will always be orthogonal. Some statements or formulas may require orthogonality to be true.

Transformation examples in 2D

• Scale by a factor of (S_x, S_y)

$$\mathbf{M} = \begin{vmatrix} \mathbf{S}_{\mathbf{X}} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_{\mathbf{V}} \end{vmatrix}$$

$$M = \begin{vmatrix} S_x & 0 \\ 0 & S_y \end{vmatrix}$$
 (Above, $S_x = 1/2, S_y = 1$)

Orthogonal Transformations

- Orthogonal transformations are defined by OTO=I
- Also have |det(O)|=1 (*)
- Rigid body rotations and mirror "flip"

If you are not familiar with determinants, do not worry about it. We will not be using them in this course.

Transformation examples in 2D

• Mirror flip through y axis (Orthogonal)

This looks like a rotation out of the page, but it is actually a bit different because which side is facing you changes in the one case but not the other.

Transformation examples in 2D

• Rotate around origin by θ (Orthogonal)

$$M = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$$

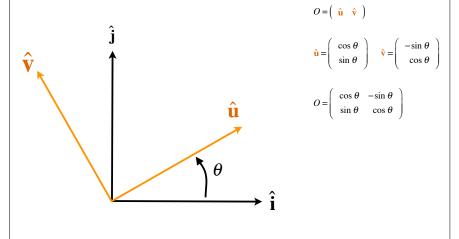
(Above, $\theta = 90^{\circ}$)

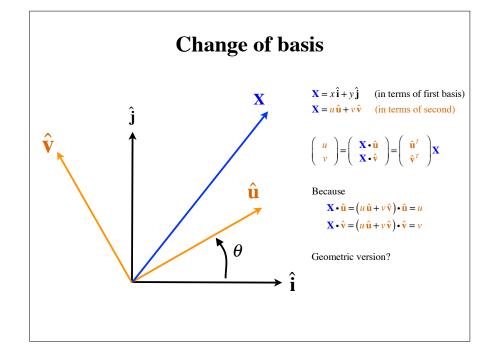
Rotating orthogonal coordinate systems

$$(\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}) \Rightarrow (\hat{\mathbf{u}}, \hat{\mathbf{v}}, \hat{\mathbf{n}})$$
$$\hat{\mathbf{u}} = O\hat{\mathbf{i}} \qquad \hat{\mathbf{v}} = O\hat{\mathbf{j}} \qquad \hat{\mathbf{n}} = O\hat{\mathbf{k}}$$

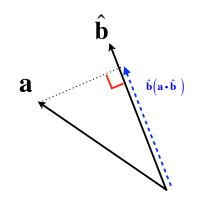
$$O = \begin{vmatrix} \hat{\mathbf{u}} & \hat{\mathbf{v}} & \hat{\mathbf{n}} \end{vmatrix}$$

Rotating orthogonal coordinate systems





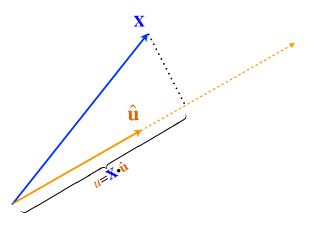
Recall Projection



If $\hat{\mathbf{b}}$ (unit vector) is an axis of a coordinate system, then $\hat{\mathbf{b}} \cdot \mathbf{a}$ is the coordinate.

(Try it with the standard x-axis!)

Coordinate with respect to a basis vector



Rotation matrix and change of basis

Rotation matrix defined by axis $(\hat{\mathbf{u}}, \hat{\mathbf{v}})$ is

$$O = \begin{pmatrix} \hat{\mathbf{u}} & \hat{\mathbf{v}} \end{pmatrix}$$

Change to basis defined by axis $(\hat{\mathbf{u}}, \hat{\mathbf{v}})$ is

$$O^T = \begin{pmatrix} \hat{\mathbf{u}}^T \\ \hat{\mathbf{v}}^T \end{pmatrix}$$

These are inverses, since O is orthogonal.

Pragmatic note--you usually do not need to think about angles when figuring out rotations. Just focus on where you need to go!