ISTA 352

Lecture 8

Finish tutorial on linear algebra and Digital representation of image data

Administrivia

- HW one due tonight
- HW two now posted
- Today includes some material needed for HW two
- Bonus demo today in GS 906 at 1:00

Linear functions (quick recap)

• The usual compact formula defining a linear transformation

$$f(a*\mathbf{L}_1+b*\mathbf{L}_2)=a*f(\mathbf{L}_1)+b*f(\mathbf{L}_2)$$

- Matrix multiplication implements linear functions on vectors
- Geometrically, linear functions map lines to lines
- Associativity of matrix multiplication means that we can construct complex linear transformations from sequences of elementary ones

Review

Transformation examples in 2D

• Scale (stretch) by a factor of k

$$\mathbf{M} = \begin{vmatrix} \mathbf{k} & \mathbf{0} \\ \mathbf{0} & \mathbf{k} \end{vmatrix}$$

(k = 2 in the example)

Review

Transformation examples in 2D

• Scale by a factor of (S_x, S_y)

$$\mathbf{M} = \begin{vmatrix} \mathbf{S}_{\mathbf{X}} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_{\mathbf{V}} \end{vmatrix}$$

$$M = \begin{vmatrix} S_x & 0 \\ 0 & S_y \end{vmatrix}$$
 (Above, $S_x = 1/2, S_y = 1$)

Review

Orthogonal Transformations

- Orthogonal transformations are defined by OTO=I
- Also have |det(O)|=1 (*)
- Rigid body rotations and mirror "flip"

If you are not familiar with determinants, do not worry about it. We will not be using them in this course.

Review

Transformation examples in 2D

• Mirror flip through y axis (Orthogonal)

Review

Transformation examples in 2D

• Rotate around origin by θ (Orthogonal)

$$M = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$$

(Above, $\theta = 90^{\circ}$)

2D Transformations

- Translation
- $(\mathbf{P}_{\text{new}} = \mathbf{P} + \mathbf{T})$

Recall that translation is not linear!

There is no 2x2 matrix that works!

Homogenous Coordinates (2)

- Basic transformations are easy to derive (examples coming up)
- We can implement translation by matrix multiplication
- More importantly, we can also implement represent perspective projection matrix multiplication
- This means all operations needed for image construction can be chained together into one matrix (recall that matrix multiplication is associative)

Homogenous Coordinates

- Represent 2D points by 3D vectors
 - This representation is called homogeneous coordinates
- To create a 3D vector from a 2D point we add "1" as the third coordinate
 (x,y)-->(x,y,1)
- To convert homogeneous to regular coordinates
 - -(x,y,W)-->(x/W,y/W,1) (and ignore the last coordinate)
- Note that a multitude of 3D points (x,y,W) represent the same 2D point
- Homogeneous coordinates for 3D points work analogously
 - -(x,y,z)-->(x,y,z,1)
 - -(x,y,z,W)-->(x/W,y/W,z/W,1)

2D Scale in H.C.

$$\mathbf{M} = \left| \begin{array}{ccc} \mathbf{S}_{\mathbf{x}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_{\mathbf{y}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{array} \right|$$

2D Rotation in H.C.

$$M = \begin{vmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

2D Translation in H.C.

•
$$\mathbf{P}_{\text{new}} = \mathbf{P} + \mathbf{T}$$

•
$$(x', y') = (x, y) + (t_x, t_y)$$

$$M = \begin{array}{|c|c|c|} \hline ? & \hline \end{array}$$

2D Translation in H.C.

•
$$\mathbf{P}_{\text{new}} = \mathbf{P} + \mathbf{T}$$

•
$$(x', y') = (x, y) + (t_x, t_y)$$

$$\mathbf{M} = \left| \begin{array}{ccc} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{array} \right|$$

Digital representation of images

Vector vs raster representation

- Raster representation of an image (very familiar)
 - Array of values indexed by spatial coordinates
 - image(i,j) = intensity encoding (BW/gray scale)
 - image(i,j) = color encoding, e.g., (R,G,B)
 - Makes sense as an encoding of sensor array data
 - Digital cameras, scanned photos
 - Suffers quantization errors, fixed "true" resolution
 - Resolution can be lost during transformation

How many bits for color images

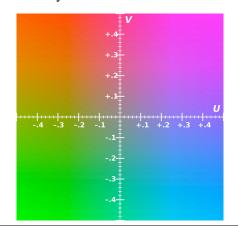
- 3x256 bits is close to enough
 - Provisos
 - Using a good non-linear transfer function (gamma)
 - Three channels does not quite provide full color fidelity
 - This is not a "number of bits issue"
 - We will understand this ... later!
- Definition of enough
 - If, under the optimal transfer functions, any two colors are barely distinguishable then adding more colors resolution will not help
 - Humans can distinguish about 10 million colors (ignoring brightness) under laboratory conditions
 - So, 2^{3} 8) is in the right ball park

Vector vs raster representation

- Vector representation
 - Prescriptive code to generate images
 - Examples
 - A line segment with endpoints (x1,y1) and (x2, y2)
 - Text string to insert at a particular location
 - Can be very compact
 - Resolution is not an issue as image is generated from potentially very accurate data as needed
 - Natural and effective for computer generated material
 - Examples
 - Common modern example is a PDF file (except for embedded raster encoded material)
 - Historical example is the very earliest days of graphics where data to displays was in the form of line segments

Aside on color versus chromaticity

- · Color consists of brightness and chromaticity
- In a 3D color space, chromaticity is 2D



Aside on color versus chromaticity

- Color consists of brightness and chromaticity
- In a 3D color space, chromaticity is 2D
- Brightness is a special dimension in a color space
 - The range in nature is very large
 - Imaging systems adjust the range by controlling the aperture and other means
 - Displays cannot reproduce the range of brightness that our visual system can distinguish (within a given range)
- If we want to store captured colors with a large brightness range, especially if we want purely linear data, more than 8 bits per channel can make sense
 - Typical data format is 16 bit tiff or floating point formats

Radiant energy Equally spaced noticeable differences

Concepts to keep separate

- Color range that can be represented or displayed
 - Later we will learn that you can see colors that a typical RGB system does not represent and typical monitors cannot display
- Color resolution (number of colors)
 - Adequate number is driven by "just noticeable differences"
- Optimum step size between neighboring colors
 - As colors become brighter, the energy difference between just noticeable differences decreases.
 - This justifies keeping "gamma" where physical meaning of the values goes through a non-linear function.

Pure vs indexed color

- 3x256 bits used to be a lot when memory and disk space was expensive
- Indexed color works with a color "palette" of a limited number of colors
- Each array element is instead an index into the color map
 - For example, if our palette is 256 colors, then we use one byte per pixel instead of three.
 - 16 colors cuts the memory footprint down to 4 bits per pixel
- Now that memory/disk is cheap should one care?
 - The concept of a color map persists in many places