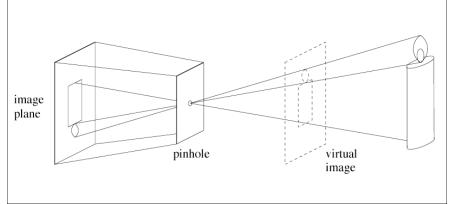
ISTA 352

Lecture 10


The world in perspective

Administrivia

- Next time I will be assuming the linear algebra developed so far
 - Please review it!

Pinhole cameras

- Abstract camera model-box with a small hole in it
- Pinhole cameras work for deriving algorithms--a real camera needs a lens

Distant objects are smaller

Slide courtesy Frank Dellaert

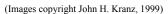
Object size vs. object depth

(Images copyright John H. Kranz, 1999)

Size Constancy

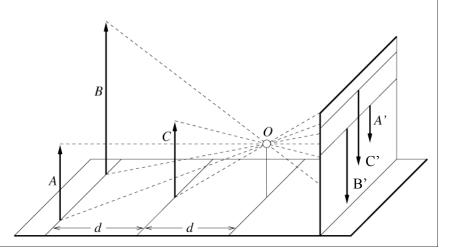
Slide courtesy Frank Dellaert

Object size vs. object depth



Size Constancy

Slide courtesy Frank Dellaert


Object size vs. object depth

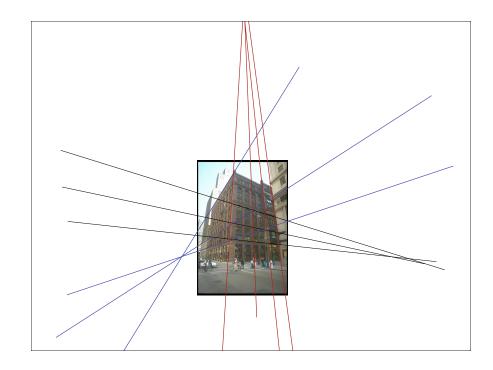
Distant objects are smaller

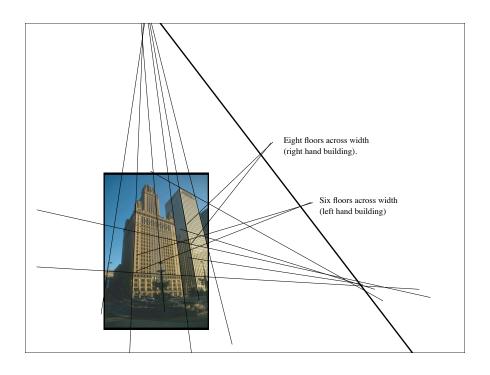
Geometric properties of projection

- Points go to points
- Lines go to lines
- Polygons go to polygons
- Degenerate cases
 - line through focal point projects to a point
 - plane through focal point projects to a line

Vanishing points

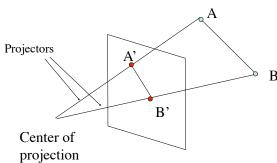
Photo by Neil Kremer


Vanishing points


- Each set of parallel lines (=direction) meets at a different point
 - The vanishing point for this direction
 - Exception is lines that are perpendicular to the camera plane

Vanishing points

- Each set of parallel lines (=direction) meets at a different point
 - The vanishing point for this direction
 - Exception is lines that are perpendicular to the camera plane
- The vanishing points for directions on a plane are co-linear
 - The horizon for that plane



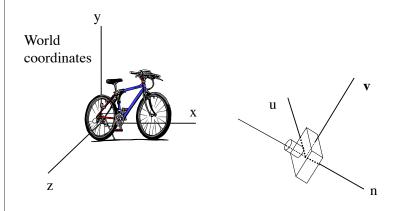
Is the picture a fake?

- If scale and perspective don't work correctly, perhaps the image is a fake!
- We can check if:
 - Each set of parallel lines (=direction) meets at a different point
 - Sets of parallel lines on the same plane lead to *collinear* vanishing points.

More on projections

The projection of A is A'

What is the projection of A'?


More on projections

- Want to think about geometric image formation as a mathematical transformation taking points in the 3D world and mapping them into an image plane.
- Mathematical definition of a projection: PP=P
 - (Doing it a second time has no effect).
- Transformation looses information (e.g., depth)
 - Given a 2D image, there are many possible 3D worlds
 - Projections are not invertible!
 - Exception is P=I

Geometric Camera Model

- Let P=(X,Y,Z) be a point in space.
- Let (u,v) be image coordinates.
- A geometric camera model, G, tells us where P goes in the image.
- $(u,v) = G(\mathbf{P})$

World and camera coordinates

