ISTA 352

Lecture 33

Image Analysis (II, mostly about filters)

Review

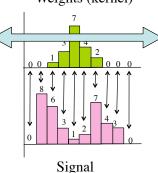
Linear Filtering

- Important class of filters
- Examples from before that are linear
 - Block averaging
 - Replace pixel with local change estimated by the difference between a pixel and its neighbors
- Examples of non linear filters
 - Median filter

Administrivia

- Quiz 3 next time, material up to the end of Nov 09
 - Specifically, up to the end of the introduction of linear filters
 - We will review the key notions today before continuing with filters
 - Test topics
 - Some review questions
 - Mostly about scientific imaging and images in science
 - Perhaps a few general questions on image processing and analysis
 - Perhaps a few questions on linear filtering

Linear Filtering


Review

• Basic operation is a **dot product** between pixels values in "block", and those in a "filter".

• In one dimension

Weights (kernel)

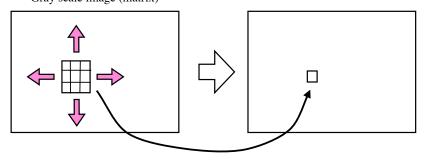
Multiply lined up pairs of numbers and then sum up

Review

Linear Filtering

- Basic operation is a **dot product** between pixels values in "block", and those in a "filter".
- These words all refer to the same thing
 - filter
 - mask
 - weights
 - kernel

Review


Linear Filter Examples

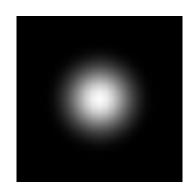
Replace each pixel with the the average of itself and immediate neighbors (block average)

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Linear Filtering (2D)

Gray scale image (matrix)

Compute product of the weights in the mask with corresponding image ones, and sum up (dot product)


Result goes into a new image at the same place as the mask location

Then slide mask over one pixel and do it again (etc.)

Review

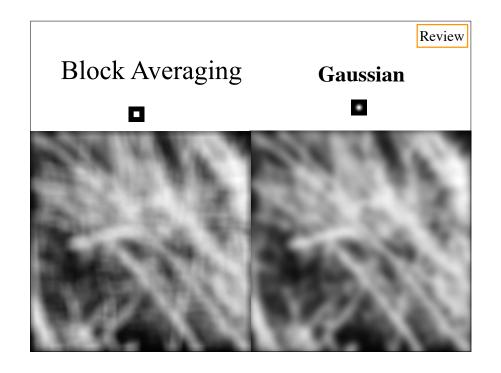
Review

An Isotropic Gaussian Filter

• The picture shows a smoothing kernel proportional to

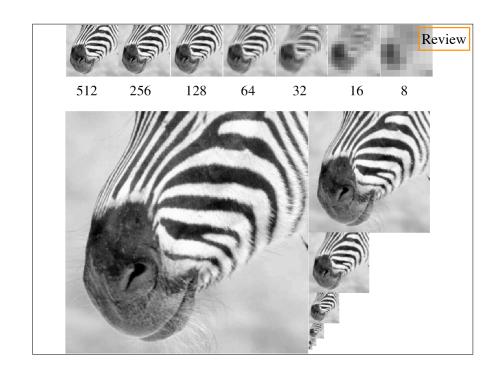
$$\exp\left(-\left(\frac{x^2+y^2}{2\sigma^2}\right)\right)$$

(a reasonable model of a circularly symmetric fuzzy blob)


 The Gaussian filter is the standard way to smooth images An Isotropic Gaussian Filter

• The picture shows a smoothing kernel proportional to $\exp\left(-\left(\frac{x^2+y^2}{2\sigma^2}\right)\right)$ (a reasonable model of a circularly symmetric fuzzy blob)

• The Gaussian filter is the standard


way to smooth images

Review

Image Scale

- The difference between a tree in the distance, and its leaves up close, is one of image scale
- An arbitrary image will have multiple arbitrary scales
- Typically we analyze images at various scales
- A good way to think of rescaling an image is to smooth with a Gaussian and sub sample the results.

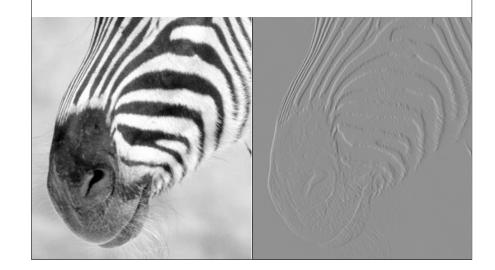
Linear Filter Examples particular example)

Review (concept, not

Suppose you wanted a filter to respond to the changes (edges) in an image.

Simple differencing operator (horizontal direction).

-1


Linear Filtering as Functions

- Because the fundamental operation is a dot product, the filtering method just described is linear
- Specifically, given the filtering operation defined by the mask M, denoted by $f_M()$, we have

$$f_{M}(aI_{1}+bI_{2})=af_{M}(I_{1})+bf_{M}(I_{2})$$

- Exercises
 - Verify this is true for one of the linear function examples
 - Verify this is not always true for max() and median()

Review (concept, not Finite differences (x-direction year example)

