ISTA 352

Lecture 36

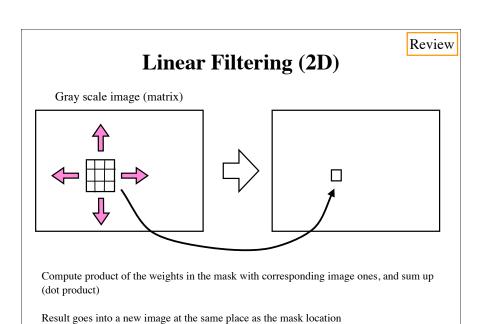
Image Analysis (III, mostly about filters)

Administrivia

- Quiz 3 grades were generally good
- Worst question was #3

Administrivia

- Schedule for rest of term
 - Today and Wednesday, finish up image processing
 - Friday, Leonard will be back (stereo perception)
 - Monday, review, quiz hints, course evaluation
 - Monday lecture will **not** be recorded
 - Next Wednesday, quiz 4
 - Monday, Dec 10, project presentations (optional)



Then slide mask over one pixel and do it again (etc.)

Quiz 3, question 3

3. Consider the filter on the left, and the image on the right. Compute the filter response at the image point emphasized. [Hint. The result is a single number] Show your work! (4 marks)

0	-1	0
-1	4	-1
0	-1	0

6	3	4	4
3	4	1	5
5	3	2	2
2	2	9	7

We center the filter so the 4 is over the 2, multiply the numbers that are matched, and sum up. Skipping the ones that are zero in the mask, we have five terms

$$(-1)(1)+(-1)(3)+(4)(2)+(-1)(2)+(-1)(9) = -1-3+8-2-9 = -7$$

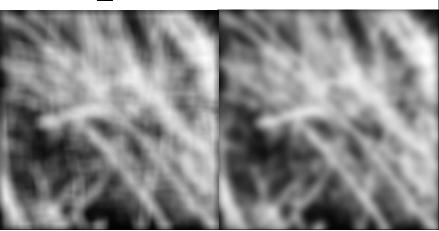
Or more quickly (or to check) by

$$4*2 - (1 + 3 + 2 + 9) = 8 - 15 = -7$$

Review

Block Averaging

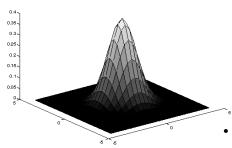
Gaussian



Review

An Isotropic Gaussian Filter

• The picture shows a smoothing kernel proportional to



$$\exp\left(-\left(\frac{x^2+y^2}{2\sigma^2}\right)\right)$$

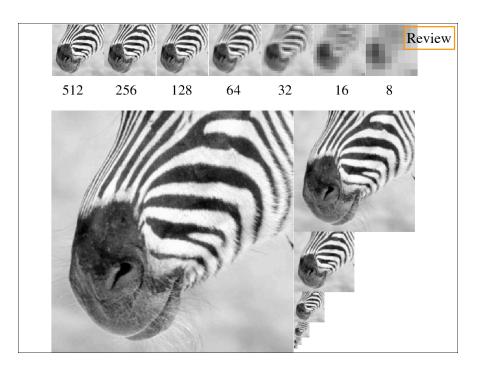
(a reasonable model of a circularly symmetric fuzzy blob)

The Gaussian filter is the standard way to smooth images

Image Scale

Review

- The difference between a tree in the distance, and its leaves up close, is one of image scale
- · An arbitrary image will have multiple arbitrary scales
- Typically we analyze images at various scales
- A good way to think of rescaling an image is to smooth with a Gaussian and sub sample the results.



Linear Filtering as Functions

- Because the fundamental operation is a dot product, the filtering method just described is linear
- Specifically, given the filtering operation defined by the mask M, denoted by $f_M()$, we have

$$f_{M}(aI_{1}+bI_{2})=af_{M}(I_{1})+bf_{M}(I_{2})$$

- Exercises
 - Verify this is true for one of the linear function examples
 - Verify this is not always true for max() and median()

Correlation and Convolution

- Notice that the mask (kernel) is just another image.
- We denote the operation just described as the *correlation* between the signal g() and the kernel h()

$$f(I) = g \odot h$$

• A similar, but **more important** operator is *convolution*

$$f(I) = g \otimes h$$

- Operationally, convolution is correlation by a mask (kernel) that is flipped over each axis (for 2D, X and Y)
 - If the mask is symmetric, then \otimes and \odot are the same.

Correlation and Convolution (II)

• Both convolution and correlation are associative

$$(A \otimes B) \otimes C = A \otimes (B \otimes C)$$

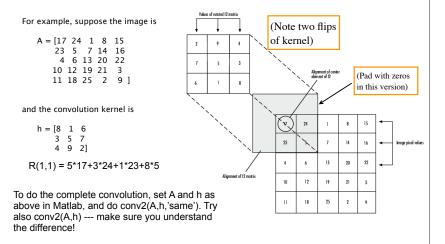
$$(A \odot B) \odot C = A \odot (B \odot C)$$

- This can save CPU time!
- Interestingly, convolution **is** commutative, but correlation **is not** commutative.

Correlation and Convolution (III)

- Other notations for convolution are * (1D) and ** (2D)
- In Matlab to implement convolution, use the function *conv* () (for 1D) and *conv2*() (for 2D).
- For correlation, see *filter()* and *filter2()*.
- For images, see also *imfilter* (does both, depending on options, and has some extra options)

2D convolution example (from MathWorks website)



Correlation and Convolution (IV)

- One final complexity is what happens as the mask gets to the edge of the image
- One choice is to simply stop, but then your output is smaller than the original image
 - In Matlab this is the flag 'valid' (this is **not** the default)
- A second choice is to pad the image to make it big enough by a variety of means
 - Just add zeros (this is the default for Matlab)
 - Repeat the pixel at the edge
 - Consider the image as periodic pattern
 - Periodic, but reflect the image

Filters are templates

- Applying a filter at some point can be seen as taking a dotproduct between the image and some vector
- Filtering the image yields a set of dot products
- Useful intuition
 - Filters look like the effects they are intended to find.
 - Filters find effects that look like them.
 - Remember to flip your filter if you are implementing correlation using convolution.

Filters for steps in X (left) and Y (right). The step in X goes from high-to-low. Convolving with it finds high-to-low steps due to the flip.

