Understanding indoor scenes from images

Luca Del Pero

Main contributors: Joseph Schlecht, Emily Hartley Joshua Bowdish, Bonnie Kermgard, Kobus Barnard Other contributors: Ernesto Brau, Andrew Emmot, Daniel Fried, Jinyan Guan

ISTA 352: Images: Past, Present, and Future 09/26/2012, Tucson, AZ

Goal: understand images of indoor environments

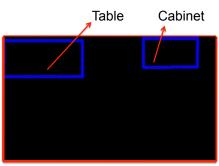
2

What does understanding an image mean?

ceiling

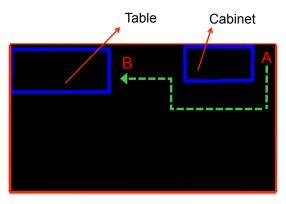
chair

Understand content in 2D (indexing, image search)


cabinet

4

What does understanding an image mean?


Reconstructing the 3D world that generated an image: What is where in 3D

3D information is useful (1)

Application: Unmanned navigation

Based on the information extracted from the image, plan a path from A to B

3D information is useful (2)

Application: Predicting human actions

Based on the geometry extracted from the image, find where humans could sit, lie, stand, etc. (Gupta et al., CVPR 2011)

7

3D information is useful (3)

Application: Computer graphics

Inserting synthetic objects in images, deal with occlusions (top) and shadows (bottom), Karsch et al, SIGGRAPH Asia 2011

3D information is useful (4)

Occlusions and context

- Thinking in 3D explains why the second chair is barely visible
- Chairs are positioned symmetrically around the table (context)

3D information is useful (5)

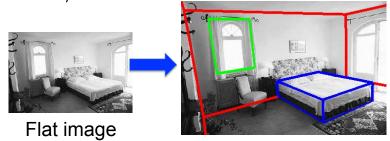
Prior information on the 3D world

- A 3D model can encode that tables have right angles
- 2D projections of right angles are not right!

10

Overview of our approach

- Recover 3D geometry of indoors scenes from indoor images
 - Recover room layout (walls, ceiling, floor)
 - Identify objects in it (beds, couches, doors, windows, etc.)



Flat image

11

Overview of our approach

- Recover 3D geometry of indoors scenes from single images
 - Recover room layout (walls, ceiling, floor)
 - Identify objects in it (beds, couches, doors, windows, etc.)

3D layout

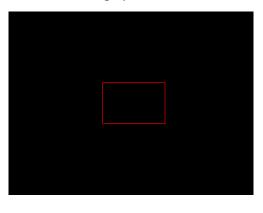
12

A generative model for rooms

- Indoor images are generated by projecting the 3D scene
- Jointly estimate:
 - Camera parameters (unknown)
 - Room layout (size, position)
 - Number of objects (pieces of furniture, doors, windows,...)
 - Position, size and identity of each object

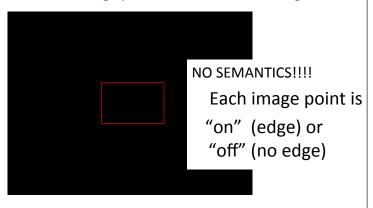
Finding the optimal parameters (inference)

- General idea: measure how well the model fits the data
- Example: image edges
- Edge likelihood compares:
 - 1) Edge points detected on the image plane
 - 2) Edge points generated by projecting the 3D layout under the camera



14

Toy example: find the rectangle!


- Edge points are detected when there is a change in color
- Given the detected edge points, where is the rectangle?

15

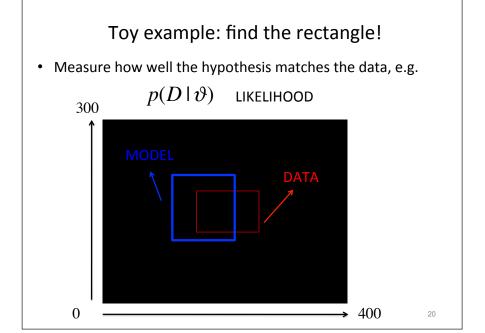
Toy example: find the rectangle!

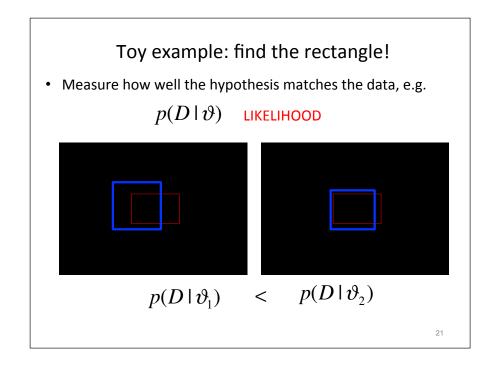
- Edge points are detected when there is a change in color
- Given the detected edge points, where is the rectangle?

Toy example: find the rectangle!

• What is a good model for the rectangle?

Toy example: find the rectangle!


• What is a good model for the rectangle?


$$\vartheta = (c_x, c_y, w, h) \qquad \text{MODELING}$$

$$0 \longrightarrow 400$$

Toy example: find the rectangle! • Find the parameters that best fit the image Example $\vartheta=(c_x,c_y,w,h)=(120,90,80,90)$ **MODEL** | MODEL** | NOT A GOOD FIT!!!

→ 400

Toy example: find the rectangle!

- Measure how well the hypothesis matches the data
 - Model edges are close to data edges $p(D \mid \vartheta) \uparrow$
 - More data edges than model edges $p(D \mid \vartheta) \downarrow$
 - More model edges than data edges $p(D \mid \vartheta) \downarrow$

Toy example: find the rectangle!

- INFERENCE: find $\vartheta = (c_x, c_y, w, h)$ maximizing $p(D \mid \vartheta)$
- Several techniques: gradient descent, sampling, etc.

DEMO 1 \rightarrow find c_y

DEMO 2 → find all parameters

 Same ideas can be applied in 3D -> model edges come from 3D model hypothesis projected using camera hypothesis

DEMO 3 -> find 3D position of the cuboid

23


...and back to the original problem

- Indoor images are generated by projecting the 3D scene
- · Jointly estimate:
 - Camera parameters (unknown)
 - Room layout (size, position)
 - Number of objects (pieces of furniture, doors, windows,...)
 - Position, size and identity of each objects

Room geometry

• Model room and objects as cuboids (blocks)

- Approximate furniture (couches, beds) with bounding boxes, frames (windows, doors) with thin blocks
- Furniture (blue) is on the floor, frames (green) are attached to a wall, objects can not overlap

25

24

Camera parameters

- Focal length and extrinsic parameters
- The camera determines the perspective distortion

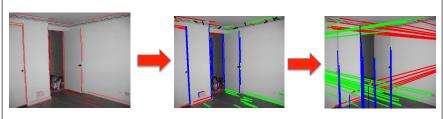
Wrong camera

Correct camera

Inference

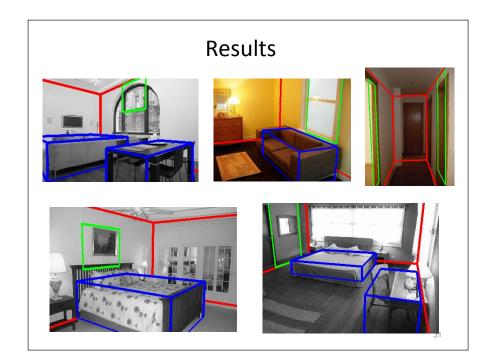
- Find model parameters that maximize the edge likelihood
- Challenges:
 - vast parameter space
 - very structured output (e.g. objects have to touch the floor, they cannot overlap, etc.)
- In general, recovering 3D from 2D is under constrained

27


Manhattan world assumption

- Most surfaces are aligned to three orthogonal directions
- This assumption enables reconstruction from a single image (2D to 3D)


Manhattan world assumption

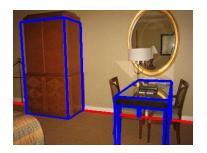


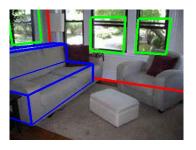
Detect edges

Group them based on convergence

- Compute camera parameters (e.g., focal length) from three vanishing points (analytically)
- Good initialization in most cases -> simpler inference

3D reasoning at work Explaining occlusions


Fitting the room only



Fitting the room and the objects

32

Ongoing work

Use detailed models for furniture, instead of simple blocks