
ISTA 410/510 Homework III

For contribution to the final grade, due dates, current late policy, and instructions for handing the 
assignment in, see the assignment web page. 

Please create a PDF document with your answers and/or the results of any programs that you write. You 
should also hand in your programs. 

Questions marked by * are required for grad students only. They count as challenge problems for 
undergraduates. 

Questions marked by ** are challenge problems for both grads and undergraduates. 

Any non-challenge problem can be replaced by a challenge problem; please make it clear that this is what 
you are doing (e.g., for a required problem you could answer “see optional problem #3”). The point here 
is to enable students to avoid problems that they feel are not instructive. 

Extra problems (please indicated in your answer when you are doing an extra problem) are eligible for 
modest extra credit. The maximum score for an assignment will be capped at 120%. The maximum score 
for all assignments taken together is capped at 65/60. 

For simplicity, problems are generally all worth the same, except ones marked by “+” that are expected to 
substantively more time consuming, and are worth double (or two no “+” problems).  Additional “+”s 
scales linearly. 

Note: Hints or answers to many of these problems can be looked up. If you are stuck and make use of a 
resource, simply make a note of it. For example, you might say that you had a glance at the solution to the 
same or similar problem solution in a particular source, and then attempted to recreate for yourself. This 
is better than being completely stuck, or copying the answer blindly.  

Undergraduates need to do 6 problems reasonably correctly for full credit, graduate students need to do 
10 problems reasonable correctly for full credit. 



1.    (Regression explained using three problems). 

(a)       

 
Let  y(x) = 1+ 2x + 3x2

Express y(2) as the dot product of two vectors of length 3.

(b)     

 

Let  y(x) = 4 + 3x + 2x2 +1x4

Express: y1 = y(0),  y2 = y(
1
2

),  y3 = y(1),  y4 = y(2),  y5 = y(3)

as a 5x4 matrix times  a vectors of length 4.

(c)

 

Now suppose you have observed values that might come the model in (b)

at the same x values, specifically (0, 1
2

,1,2,3),  in a vector y.

Let the 5x4 matrix be A, and the vector of length 4 be w. 
Express the sum of the squared error between the estimate and the data 
using these matrices and vectors.  

(To connect this to the next problem, notice that your answer does not
depend on the particular polynomial model or data). 

2.  Now consider the general case of a polynomial with coefficient vector, w, where there is no error in 
the  x values, but observed y values are distributed normally around the values predicted by the model 
(the mean) with some know variance. Assume that the length of w is given, but that its values are not 
known.  Show that the MLE for w is the minimum of the expression from the above problem. 

3. (*) Show that the solution to (2) is w = A†y     where A† = ATA( )−1
AT     (pseudoinverse). 

4. Consider the function f(x)=cos(x) from 0 to 2 pi. In Matlab, generate three sets of 10 random data 
points from this known model by generating 10 values of x (uniformly spread is OK),  computing the 
value of y=f(x), and adding 1) Gaussian noise with three different variances:  0.001, 0.01, and 0.1. Next 
your program should find w for lengths 1 to 10 using the expression in 3 (even if you did not derive it). 
Plot the RMS error (the square root of the average of the squared error) as a function of the length of w 
for the three variances. Based on lowest error, what is the best value for the length of w?  

5. Repeat (4) but instead of the error, plot (a) the log of the likelihood, (b) the AIC value, and (c) the BIC 
value. Notice that do this, you will need an estimate for the variance which you can compute from the 



data and the model fit. (Begin by computing the deviations of the data from the estimates). Which value 
of w is suggested in each case?

6. Repeat (4) for lengths 1 through 9, holding out each point in turn. Plot the RMS error as before, but 
now plot averages of the RMS error over the 9 runs for the training data (the data used to fit the curve) 
and the held out data. (Note that since your held out data sets have only one point, the RMS is the 
absolute value). What is a good value for the length of w for each variance based on the average of the 
RMS errors? 

7.(*) Now let’s put a prior on the coefficients of w. Let’s use a simple multivariate normal distribution 
with 0 mean and diagonal covariance (equal for each coefficient). So the precision matrix is simply a 
parameter, alpha, times the identify matrix. Derive an expression for the posterior distribution. It should 
depend on both the original precision (or variance) and the precision (or variance) for the prior. 

8.(**) Minimize the expression in (7) to derive an expression for the MAP estimate. 

9.(*) Derive the decision boundary between two classes with univariate Gaussian posteriors for given 
means and variances. In other words, you are laying out the algorithm for deciding between two 
Gaussians each with their own mean and variance. These four numbers would be the input to your 
program (if you were to write it). 

10. (From Bishop) 



11. (*, From Bishop)

 

12. (**) Draw the graphical model for a research problem that you are working on or thinking about. You 
will need to explain what the variables are, and what is generally going on as well. 

13. (**) Any exercise in Kollar and Friedman chapter 3 that you find interesting. 

14. (**) Same as (13) excluding the same one. 

15. (**) Same as (14) excluding one that you have already done. 

16. (**)


