Announcements

Assignment V posted (finally).

Sampling based inference

- Resources.
 - Bishop, chapter 11
 - Kollar and Friedman, chapter 12
 - Andrieu et al. (linked to on lecture page).

- Kollar and Friedman uses “particles” terminology instead of “samples”.

Sampling based inference

- We have studied two themes in inference.
 - Marginalization / expectation / summing out or integration
 - Optimization

- Two flavors of activities
 - Fitting (inference using a model)
 - Learning (inference to find a model)

- These activities are basically the same in the generative modeling approach.

Motivation for sampling methods

- Real problems are typically complex and high dimensional.

- Example, images as evidence for stuff in the world
Motivation for sampling methods

• Real problems are typically complex and high dimensional.

• Suppose that we could generate samples from a distribution that is proportional to one we are interested in.
 Typical case we are often interested in is $p(\theta|D)$

$$p(\theta|D) = \frac{p(\theta)p(D|\theta)}{p(D)}$$

Consider $\tilde{p}(z) = p(\theta)p(D|\theta)$

Motivation for sampling methods (II)

• Now consider computing the expectation of a function $f(z)$ over $p(z)$.

• Recall that this looks like

$$E_{p(z)}[f] = \int_z f(z)p(z)dz$$

• How can we approximate or estimate E?

Motivation for sampling methods (II)

• Now consider computing the expectation of a function $f(z)$ over $p(z)$.

• Recall that this looks like

$$E_{p(z)}[f] = \int_z f(z)p(z)dz$$

• A bad plan for computing E:

 Discretize the space where z lives into L blocks

 Then compute

 $$E_{p(z)}[f] \equiv \frac{1}{L} \sum_{i=1}^L p(z)f(z)$$
Motivation for sampling methods (II)

- Now consider computing the expectation of a function \(f(z) \) over \(p(z) \).
- Recall that this looks like
 \[
 E_{p(z)}[f] = \int f(z)p(z)\,dz
 \]
- A better plan, assuming we can sample \(\tilde{p}(z) \)

 Given independent samples \(z^{(i)} \) from \(\tilde{p}(z) \)

 Estimate
 \[
 E_{\tilde{p}(z)}[f] \approx \frac{1}{L} \sum_{i=1}^{L} f(z)
 \]

Challenges for sampling

In real problems sampling \(p(z) \) is very difficult.

We typically do not know the normalization constant, \(Z \).
(So we need to use \(\tilde{p}(z) \)).

Even if we can draw samples, it is hard to know if (when) they are good, and if we have enough of them.

Evaluating \(\tilde{p}(z) \) is generally much easier (although, it can also be quite involved).

Sampling framework

We assume that sampling from \(\tilde{p}(z) \) is hard, but that evaluating \(\tilde{p}(z) \) is relatively easy.

We also assume that the dimension of \(z \) is high, and that \(\tilde{p}(z) \) may not have closed from (but we can evaluate it).

We will develop the material in the context of computing expectations, but sampling also supports picking a good answer, such as a MAP estimate of parameters.

Basic Sampling (so far)

- Uniform sampling (everything builds on this)
- Sampling from a multinomial
- Sampling for selected other distributions (e.g., Gaussian)
 - At least, Matlab knows how to do it.
- Sampling univariate distributions using the inverse of the cumulative distribution.
Basic Sampling (so far)

• Sampling univariate distributions using the inverse of the cumulative distribution.

\[p(y) \quad h(y) \]
\[y \quad 0 \quad 1 \]

Basic Sampling (so far)

• Sampling directed graphical models using ancestral sampling.

Rejection Sampling

Assume that we have an easy to sample function, , and a constant, \(k \), where we know that \(p(z) \leq k \cdot q(z) \).

1) Sample \(q(z) \)
2) Keep samples in proportion to \(\frac{p(z)}{k \cdot q(z)} \) and reject the rest.

Rejection Sampling

1) Sample \(q(z) \)
2) Keep samples in proportion to \(\frac{p(z)}{k \cdot q(z)} \) and reject the rest.
Rejection Sampling

- Rejection sampling is hopeless in high dimensions, but is useful for sampling low dimensional “building block” functions.
- E.G., the Box-Muller method for generating samples from a Gaussian uses rejection sampling.

A second example where a gamma distribution is approximated by a Cauchy proposal distribution.

Importance Sampling

Rewrite $E_{p \leftarrow q}[f] = \int f(z) p(z) dz$

$= \int f(z) \frac{p(z)}{q(z)} q(z) dz$

$= \frac{1}{L} \sum_{i=1}^{L} \frac{p(z^{(i)})}{q(z^{(i)})} f(z^{(i)})$ where samples come from $q(z)$

For complex functions, a good $q()$ and k may not be available.
- One attempt to adaptively find a good $q()$ (see Bishop 11.1.3)