Announcements

Assignment V posted (finally).

Sampling based inference

- Resources.
 - Bishop, chapter 11
 - Kollar and Friedman, chapter 12
 - Andrieu et al. (linked to on lecture page).
- Kollar and Friedman uses "particles" terminology instead of "samples".

Sampling based inference

- We have studied two themes in inference.
 - Marginalization / expectation / summing out or integration
 - Optimization
- Two flavors of activities
 - Fitting (inference using a model)
 - Learning (inference to find a model)
- These activities are basically the same in the generative modeling approach.

Motivation for sampling methods

- Real problems are typically complex and high dimensional.
- Example, images as evidence for stuff in the world

Motivation for sampling methods

- Real problems are typically complex and high dimensional.
- Suppose that we *could* generate samples from a distribution that is proportional to one we are interested in.

Typical case we are often interested in is $p(\theta|D)$

$$p(\theta|D) = \frac{p(\theta)p(D|\theta)}{p(D)}$$

Consider $\tilde{p}(z) = p(\theta) p(D|\theta)$

Motivation for sampling methods

- Generally, θ lives in a very high dimensional space.
- Generally, regions of high $\tilde{p}(z)$ is very little of that space.
- IE, the probability mass is very localized.
- Watching samples from $\tilde{p}(z)$ should provide a good maximum (one of our inference problems)

Motivation for sampling methods (II)

- Now consider computing the expectation of a function f(z) over p(z).
- Recall that this looks like $E_{p(z)}[f] = \int_{z} f(z)p(z)dz$
- How can we approximate or estimate E?

Motivation for sampling methods (II)

- Now consider computing the expectation of a function f(z) over p(z).
- Recall that this looks like $E_{p(z)}[f] = \int_{z} f(z)p(z)dz$
- A bad plan for computing E:

Discretize the space where z lives into L blocks

Then compute
$$E_{p(z)}[f] \cong \frac{1}{L} \sum_{l=1}^{L} p(z) f(z)$$

Motivation for sampling methods (II)

- Now consider computing the expectation of a function f(z) over p(z).
- Recall that this looks like $E_{p(z)}[f] = \int_{z} f(z)p(z)dz$
- A better plan, assuming we can sample $\tilde{p}(z)$

Given independent samples $z^{(l)}$ from $\tilde{p}(z)$

Estimate
$$E_{p(z)}[f] \cong \frac{1}{L} \sum_{l=1}^{L} f(z)$$

In real problems sampling p(z) is very difficult.

We typically do not know the normalization constant, Z. (So we need to use $\tilde{p}(z)$).

Challenges for sampling

Even if we can draw samples, it is hard to know if (when) they are good, and if we have enough of them.

Evaluating $\tilde{p}(z)$ is generally much easier (although, it can also be quite involved).

Sampling framework

We assume that sampling from $\tilde{p}(z)$ is hard, but that evaluating $\tilde{p}(z)$ is relatively easy.

We also assume that the dimension of z is high, and that $\tilde{p}(z)$ may not have closed from (but we can evaluate it).

We will develop the material in the context of computing expections, but sampling also supports picking a good answer, such as a MAP estimate of parameters.

Basic Sampling (so far)

- Uniform sampling (everything builds on this)
- Sampling from a multinomial
- Sampling for selected other distributions (e.g., Gaussian)
 - At least, Matlab knows how to do it.
- Sampling univariate distributions using the inverse of the cumulative distribution.

Basic Sampling (so far)

• Sampling univariate distributions using the inverse of the cumulative distribution.

Basic Sampling (so far)

• Sampling directed graphical models using ancestral sampling.

Rejection Sampling

Assume that we have an easy to sample function, , and a constant, k, where we know that $p(z) \le k \cdot q(z)$.

- 1) Sample q(z)
- 2) Keep samples in proportion to $\frac{p(z)}{k \cdot q(z)}$ and reject the rest.

Rejection Sampling

- 1) Sample q(z)
- 2) Keep samples in proportion to $\frac{p(z)}{k \cdot q(z)}$ and reject the rest.

Rejection Sampling

- Rejection sampling is hopeless in high dimensions, but is useful for sampling low dimensional "building block" functions.
- E.G., the Box-Muller method for generating samples from a Gaussian uses rejection sampling.

A second example where a gamma distribution is approximated by a Cauchy proposal distribution.

Importance Sampling

Rewrite
$$E_{p(z)}[f] = \int f(z) p(z) dz$$

$$= \int f(z) \frac{p(z)}{q(z)} q(z) dz$$

$$\cong \frac{1}{L} \sum_{l=1}^{L} \frac{p(z^{(l)})}{q(z^{(l)})} f(z^{(l)})$$

where samples come from q(z)

Rejection Sampling

- For complex functions, a good q() and k may not be available.
- One attempt to adaptively find a good q() (see Bishop 11.1.3)

