
ISTA 410/510 Final (take home)

For contribution to the final grade, due dates, current late policy, and instructions for handing the 
assignment in, see the assignment web page. 

Please create a PDF document with your answers and/or the results of any programs that you write. You 
should also hand in your programs. However, the programs will not necessarily be consulted. All 
information for grading should be in the PDF.

Because this is an exam, you should not post questions to the maillist. Rather, send requests for 
clarification to the instructor. 

However, because it is structured as an assignment, some help can be provided by the instructor in office 
hours.  

There is a total of 30 points. Because the discretizations are not so clean as the other two take home 
assignments, we will simply grade it out of 20 for grad students, and out of 12 for undergrads. Different 
from before, bonus points are available if you choose to hand in more than what is required.



1.     (++) Consider a process that generates points which are the result of an edge detector running on an 
image. We will assume that images are square. With 50% probability, the process produces points 
that are uniformly distributed over the image. With 50% probability, the process produces points 
from one of 5 circles. The circles have a tendency to be closer to the center of the image, but they 
can occur anywhere. More specifically, the probability that a circle center is at an image corner is 
10% that of it being in the center. Similarly circle radii tend to be 10% of the image width, but have 
some variance. 

        Produce a Bayesian model for N observed edge points. For details not specified, make reasonable 
assumptions. Provide a formulation for the distribution over model parameters based on the N 
observed points. Identify priors and likelihoods to demonstrate that you understand these terms.

        (3 points total)

2.     Consider all the words in a book put into a book word bag, B (i.e., ignore the order). Since we are 
ignoring order, a lot of information is clearly lost. Consider also a big bag of words, L (for library) 
that is representative of all books. IE, take the words of all books and put them into one big bag. 

        (a) Consider reducing L to a frequency distribution that is indicative of probability of word 
occurrences in written English. Does this have any structure (or information content) at all? Explain.

        (b) Consider the set of all frequency distributions for books. Does this set of distributions have any 
further structure than L, or can we consider them as simply samples of L?

        (c) Create a graphical model (with a picture) for the words in a bag based on the following idea. 
Books are on subjects, and subjects imply a distribution over topics. For example, Bayesian 
modeling books contain the topic “conjugate priors”. Words come topics, independent of subject. 
Are the implications of this model consistent with your answer for (b). 

        (3 points total)

3. A simple sampler. The code provided on the website, secret.m, is a function that maps any pair of 
real numbers (but we will assume they are integers) into a probability density. You can assume the 
real action is in the range of (-25,25)x(-25,25). Consider exploring this function based on the grid 
points using the basic Metropolis algorithm. A state is a grid location, and the q() function changes 
to another grid location. 

(a) Propose a q() function that can potentially visit every state. You can assume that secret() has 
some local structure, so moves that switch to an adjacent grid location might make sense. 
Make sure that your q() function is symmetric, otherwise the problem is harder. 

(b) Write a computer program to sample the space from a random starting point in the above 
range. Keep a running count of the number of times the sampler visited each point in the 
above range. Your sampler should have a non-zero change of leaving that range, and just 
ignore those samples while you are counting. Visualize the count matrix. One way to do that 
is with:

figure;
colormap(‘gray’);
imagesc(counts); 

Provide three different images for each of 1000, 10000, and 100000 iterations (nine figures 
total). Is the starting point being forgotten.

(6 points total). 



4.     Consider a set of N states S={1,2,3,...,N} to be visited by a MCMC sampler. Consider the distance 
between states S1 and S2 to be |S1-S2|. For example, the distance between state 4 and state 7 is 3. 
Suppose that the probability of transitioning from S1 to S2 is proportional to a Gaussian distribution 
over x=(S1-S2) with mean zero and variance five.

(a)  (++) Write a computer program to generate a properly normalized transition matrix and create 
and image to display it with blocks of darker or brighter shades indicating lower or higher 
probability. In Matlab, the following might do the trick (stretch to get bigger blocks),

figure;
colormap(‘gray’);
imagesc(T);

but you may need to further scale the transitions non-linearly to view it properly.Provide an 
image for N=20. 

(b) For your N=20 matrix, find a stationary probability vector, and produce Matlab (or other 
computer program output) that (1) shows how you found that vector, and (2) verifies that it is 
in fact a stationary probability vector. You can cut and paste the Matlab output into your PDF.

(c)  (++) Recall that we considered that we can start with any probability vector, and successive 
applications of the transition function will lead to a stationary vector. Use a uniform vector as 
your initial probability vector. Measure the convergence by the differences between the 
vectors of successive iterations by  R=||V1-V2|| / (||V1|| +||V2||) . Define convergence time, T, 
by the number of iterations to get R below a certain threshold (try 1e-08). For some 
reasonable definition of R, plot T versus N for some reasonable values of N. You should have 
at least 10 different values of N on your plot. What defines “reasonable”? You want to either 
establish that there is a systematic effect on changing N that is exposed by plotting, or 
establish that there is probably no such effect. R must be small enough to capture the 
difference, and your values of N (which need not be a linear, it could be exponential) should 
make an interesting plot, or you need to explore a big enough range of N to suggest that the 
plot is not likely to get interesting. 

(d) Redo (c) but now plot the magnitude of the second eigenvalue against N. Comment on what 
you have found 

            (8 points total)



5.   (+++) Consider the theorem from Neal 93 and its proof which are reproduced in the following two 
pages. The proof is given, but providing more details helps us understand it. Provide the following 
details. 

(i)     More detailed justification (sub-proof) of the claim that v ≤1 . 

(ii)    A brief justification of steps 3.17 through 3.22. In most cases, referring to a simple fact (e.g., 
“commutativity of addition” will suffice, but in some cases you may want to add some 
intermediate steps. 

(iii)   Confirm by doing it that it is “easy to show”  rn+1x∑ x( ) = 1 .

(iv)   A brief justification of steps 3.23 through 3.30. In most cases, referring to a simple fact (e.g., 
“commutativity of addition” will suffice, but in some cases you may want to add some 
intermediate steps. 

(4 points total)

6.  (+++++) Implement a Metropolis Hastings solution for the Gaussian Mixture Model that we have 
already done an assignment on. By using your EM code, time spent on coding should not be overly 
high because much of the problem infrastructure is in place. Redo experiments from question 1 of 
assignment 5, and report whether you are able to find a better solution. 

Alternatively, if you worked with the vision libraries in assignment 5, you could consider doing the 
above in the context of the vision library. 

Alternatively, if you want to explore a Metropolis Hastings implementation in some other context, 
this can be considered. Contact Kobus with a proposal. 

(6 points total)






