Announcements

Assignment three posted. It is due Friday, Feb 24 (truthfully Feb 28).

Office hours in GS 919 at 10:30 to 11:30.
Back to case one

Let \(a = \text{"smokes"}, \ c = \text{"high blood pressure"}, \ b = \text{"stroke"} \)

- \(p(c|a) \) tells you probability of having high blood pressure if you smoke (for some definition of each).
Can we distinguish case two from case one?

- Let a="smokes", c="high blood pressure", b="stroke"
- $p(a|c)$ tells you probability of being a smoker if you have high blood pressure (for some definition of each).
Can we distinguish case two from case one?

• Let \(a \)="smokes", \(b \)="high blood pressure", \(c \)="stroke"

• \(p(alc) \) tells you probability of being a smoker if you have high blood pressure (for some definition of each).

• Data for estimating \(p(cla) \) in first case, and \(p(alc) \) in second case cannot tell you which model you should prefer.
 - “Correlation is not causation”

• Causality implied by our generative process is about the statistics of the data, not physical causality.
More on causality

• References
 – Kollar and Friedman, Chapter 21 which starts on page 1009!
 – Classic book by Pearl, Causality: Models, Reasoning, and Inference, 2000
 • A version is available on-line (bayes.cs.ucla.edu/BOOK-99/book-toc.html)
More on causality

• We have been focussed on the joint distribution which is adequate (arguably optimal) for answering the queries we have studied
• In particular, we know how distributions over unknowns change due to evidence
• For many problems (e.g., computer vision and much of machine learning) this is sufficient
 – Either causes are obvious or not relevant
More on causality

• Two correlated variables can have multiple equivalent graphs hinting at different causal stores able to provide the same joint.
 – A causes B
 – B causes A
 – C causes both A and B
 – A and B cause C (and A and B are correlated by explaining away)

• Given a choice, we prefer the Bayes net that also represents our causal theory (if we have one)
 – More natural, easier to understand
 – Helps tell you whether observed statistics are consistent with your theory
 • (Covered briefly next)
Intervention

- Two Bayes nets that give the same joint distribution can differ in what they say about an intervention.
- We represent an intervention, \(x \), as setting some subset of the variables, \(X \), to the value, \(x \), denoted by \(do(X=x) \).
 - Example 1: Creating an experimental group that will not smoke
 - Example 2: Setting your grade to A by hacking into a computer
- On the surface, this might look like conditioning on \(X \), but it is different --- the graph needs to change also
 - We need to “mutilate” the graph
Representing Intervention

- Example one (students and grades, again)
 - Does observing grade change your belief about SAT?
Representing Intervention

• Example one (students and grades, again)
 – Does observing grade change your belief about SAT?
• Now, suppose we intervene on the Grade random variable
 – E.G., we fix it by hacking into the grade computer
 – Now does observing grade change your belief about SAT?
Representing Intervention

- The intervention not only conditions on the variable, it cuts the links that influence it. This is the mutilated graph.
Representing Intervention

- Another example --- the student from before with a link between SAT and letter. Now we expect that the intervention does not entirely explain the letter, but that the influence of *grade* is direct (only).
Representing Intervention

- Another example --- from Pearl, 2000.
 - Consider the intervention of turning the sprinkler “on”
Representing Intervention

• Representation of the intervention of turning the sprinkler on.

Figure 1.4: Network representation of the action “turning the sprinkler On.”
Back to graphs in general
Can graphs capture all independence?

• Do our graphs faithfully capture the independence structure of our distributions?

• Recall that

\[G \text{ is an I-map for } P \text{ if } I(G) \subseteq I(P) \]

In other words, all independence represented in G are true.

(There could be more independence in P that G does not reveal).

• Hence we are asking if \(I(G) \equiv I(P) \)

Since \(I(G) \subseteq I(P) \) this amounts to asking if \(I(P) \subseteq I(G) \)
Perfection

G is an P-map for P if $I(G) \equiv I(P)$ (perfect map)

In other words, all independence represented in G are true, and there are no other independence relations.

Do all distributions have perfect maps?
Perfection may not be attainable

Note no arrows, but a link still means some probabilistic relation.

The “misconception” example in K&F (pp. 82-3), where Alice, Bob, Charles, and Debbie study in pairs shown, but A and B never work together, nor do C and D.
Perfection may not be attainable

Suppose that we have
\[(A \perp B|C,D)\]
and
\[(C \perp D|A,B)\]

Now, draw the Bayes net
(have fun!).

Note **no arrows**, but a link still means some probabilistic relation.
Interesting questions

• Does every probability distribution have a corresponding Bayesian network?

Chain rule says yes

• Given the independence structure of a probability distribution, and a graph that captures them all \(I(G) = I(P)\), is the corresponding graph unique (ignoring isomorphisms)?

Case study of three nodes says no

• Do our graphs always faithfully capture the independence structure of our distributions?

Misconception example says no
Undirected graphical models

- Also referred to as
 - Markov Networks
 - Markov Random Fields

- Nodes represent (groups of) random variables

- Edges represent probabilistic relations between connected nodes.

- We have already seen an example suggestive that arrows are not always helpful.
Undirected graphical models

• The analog to d-separation is simper
 – Disjoint sets A and B are independent conditioned on C if all paths from nodes in A to nodes in B pass through C.

Here $(A \perp B \mid C)$ for all probability distributions represented by this graph.
Markov Blanket

- The Markov blanket of a node, X, is a particular set of (nearby) nodes B where $X \perp X_i | B$ for all X_i.
- For directed graphs the Markov blanket is the parents, children, and co-parents of X.
- For undirected graphs this is simply the set of nodes connected to X.
Undirected graphical models

- Bayes nets where nodes only have one parent are easily converted to undirected graphs without changing links.

- (Discussed in more detail soon)