Markov chain Monte Carlo methods

- The approximations of expectation so far have assumed that the samples are independent draws.
- This sounds good, but in high dimensions, we do not know how to get **good** independent samples from the distribution.
- MCMC methods drop this requirement.
- Basic intuition
 - If you have **finally** found a region of high probability, stick around for a bit, enjoy yourself, grab some more samples.

Markov chain Monte Carlo methods

- Samples are conditioned on the previous one (this is the Markov chain).
- MCMC is generally a good hammer for complex, high dimensional, problems.
- Main downside is that it is not "plug-and-play"
 - Doing well requires taking advantage to the structure of your problem
 - MCMC tends to be expensive (but take heart---there may not be any other solution, and at least your problem is being solved).

Metropolis Example

```
We want samples z^{(1)}, z^{(2)}, ....
```

Again, write
$$p(z) = \tilde{p}(z)/Z$$

Assume that $q(z|z^{(prev)})$ can be sampled easily

Also assume that $q(\)$ is symmetric, i.e., $q(z_{\scriptscriptstyle A}|z_{\scriptscriptstyle B}) = q(z_{\scriptscriptstyle B}|z_{\scriptscriptstyle A})$

For example, $q(z|z^{(prev)}) \sim \mathbb{N}(z; z^{(prev)}, \sigma^2)$

Metropolis Example

Metropolis Example

Note that

$$A(z,z^{(prev)}) = \min\left(1, \frac{\tilde{p}(z)}{\tilde{p}(z^{(prev)})}\right) = \min\left(1, \frac{p(z)}{p(z^{(prev)})}\right)$$

We do not need to normalize p(z)

Markov chain view

Denote an initial probability distribution by $p(z^{(1)})$

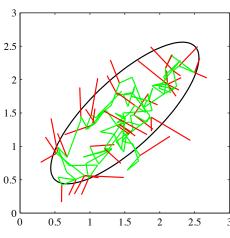
Define transition probabilities by:

$$T(z^{(prev)}, z) = p(z|z^{(prev)})$$
 (a probability distribution)

 $T = T_m(\)$ can change over time, but for now, assume that it it is always the same (homogeneous chain)

A given chain evolves from a sample of $p(z^{(1)})$, and is an instance from an essemble of chains.

Metropolis Example



Green follows accepted proposals Red are rejected moves.

Stationary Markov chains

- Recall that our goal is to have our Markov chain emit samples from our target distribution.
- This implies that the distribution being sampled at time t+1 is the same as that of time t (stationary).
- If our stationary (target) distribution is p(), then if imagine an ensemble of chains, they are in each state with (long-run) probability p().
 - On average, a switch from s1 to s2 happens as often as going from s2 to s1, otherwise, the percentage of states would not be stable
- If our stationary (target) distribution is p(), what do the transition probabilities look like?

Detailed balance

• Detailed balance is defined by:

$$p(z)T(z,z') = p(z')T(z',z)$$

(We assume that $T(\bullet)>0$)

- Detailed balance is a sufficient condition for a stationary distribution.
- Detailed balance is also referred to as reversibility.

Detailed balance (cont)

- Detailed balance (for p()) means that *if* our chain was generating samples from *p*(), it would continue to due so.
 - We will address how it gets there shortly
- Does the Metropolis algorithm have detailed balance?

Detailed balance implies stationary

$$p(z) = \sum_{z'} p(z')T(z',z)$$
 (marginalization)

If we have detailed balance, then

$$p(z')T(z',z) = p^{(prev)}(z)T(z,z')$$

So.

$$p(z) = \sum_{z'} p(z') T(z',z) = \sum_{z} p^{(prev)}(z) T(z,z') = p^{(prev)}(z')$$

Hence, detailed balance implies the distribution is stationary.

Metropolis Example

Metropolis Example

Recall that in Metropolis,
$$A(z,z') = \min\left(1, \frac{p(z)}{p(z')}\right)$$

$$\begin{split} p(z')q(z|z')A(z,z') &= q(z|z')\min(p(z'),p(z)) \\ &= q(z'|z)\min(p(z'),p(z)) \\ &= p(z)q(z'|z)\min\left(\frac{p(z')}{p(z)},1\right) \\ &= p(z)q(z'|z)\min\left(1,\frac{p(z')}{p(z)}\right) \\ &= p(z)q(z'|z)A(z',z) \end{split}$$

When do our chains converge?

- Important theorem tells us that (for finite state spaces*) our chains converge to equilibrium under two relatively weak conditions.
- (1) Irreducible
 - We can get from any state to any other state
- (2) Aperiodic
 - The chain does not get trapped in cycles
- These are true for detailed balance which is sufficient, but not necessary for convergence.

*Infinite or uncountable state spaces introduces additional complexities.

Ergodic chains

- Different starting probabilities will give different chains
- We want our chains to converge (in the limit) to the same stationary state, regardless of starting distribution.
- Such chains are called ergodic, and the common stationary state is called the equilibrium state.
- Ergodic chains have a unique equilibrium.

Intuition behind ergodic chains

Let $p^{(t)}(z)$ be the distribution at some time (e.g., initial distribution)

Let $p^*(z)$ be the stationary distribution

Let
$$p^{(t)}(z) = p^*(z) - q^{(t)}(z)$$

Note that the elements of $p^{(t+1)}(z)$ and $p^*(z)$ sum to one, and thus the elements of q(z) sum to zero.

Note also that q(z) is not a probablity.

Intuition behind ergodic chains

Let $p^{(t)}(z)$ be the distribution at some time (e.g., initial distribution)

Let $p^*(z)$ be the stationary distribution

Let
$$p^{(t)}(z) = p^*(z) - q^{(t)}(z)$$

$$p^{(t+1)}(z) = \sum_{z'} p^{(t)}(z') T(z,z')$$

$$= \sum_{z'} p^*(z') T(z,z') - \sum_{z'} q^{(t)}(z') T(z,z')$$

$$= p^*(z) - q^{(t+1)}(z)$$

Intuition behind ergodic chains

$$p^{(t+1)}(z) = \sum_{z'} p^{(t)}(z') T(z,z')$$

$$= \sum_{z'} p^*(z') T(z,z') - \sum_{z'} q^{(t)}(z') T(z,z')$$

$$= p^*(z) - q^{(t+1)}(z)$$

Claim that
$$|q^{(t+1)}(z)| < |q^{(t)}(z)|$$