Markov chain Monte Carlo methods

• The approximations of expectation so far have assumed that the samples are independent draws.

• This sounds good, but in high dimensions, we do not know how to get good independent samples from the distribution.

• MCMC methods drop this requirement.

• Basic intuition
 – If you have finally found a region of high probability, stick around for a bit, enjoy yourself, grab some more samples.

Markov chain Monte Carlo methods

• Samples are conditioned on the previous one (this is the Markov chain).

• MCMC is generally a good hammer for complex, high dimensional, problems.

• Main downside is that it is not “plug-and-play”
 – Doing well requires taking advantage to the structure of your problem
 – MCMC tends to be expensive (but take heart---there may not be any other solution, and at least your problem is being solved).

Metropolis Example

We want samples $z^{(1)}$, $z^{(2)}$,

Again, write $p(z) = \tilde{p}(z)/Z$

Assume that $q(z^{(prev)})$ can be sampled easily

Also assume that $q(\cdot)$ is symmetric, i.e., $q(z_A|z_B) = q(z_B|z_A)$

For example, $q(z^{(prev)}) \sim \mathcal{N}(z; z^{(prev)}, \sigma^2)$

Metropolis Example

While not_bored
{
 Sample $q(z|z^{(prev)})$

 Accept with probability $A(z,z^{(prev)}) = \min \left(1, \frac{\tilde{p}(z)}{\tilde{p}(z^{(prev)})} \right)$

 If accept, emit z, otherwise, emit $z^{(prev)}$.
}
Note that

\[A(z, z^{(prev)}) = \min \left(1, \frac{\hat{p}(z)}{\hat{p}(z^{(prev)})} \right) = \min \left(1, \frac{p(z)}{p(z^{(prev)})} \right) \]

We do not need to normalize \(p(z) \)

Markov chain view

Denote an initial probability distribution by \(p(z^{(1)}) \)

Define transition probabilities by:

\[T(z^{(prev)}, z) = p(z|z^{(prev)}) \] (a probability distribution)

\(T = T_m(\) \) can change over time, but for now, assume that it it is always the same (homogeneous chain)

A given chain evolves from a sample of \(p(z^{(1)}) \), and is an instance from an ensemble of chains.

Stationary Markov chains

- Recall that our goal is to have our Markov chain emit samples from our target distribution.
- This implies that the distribution being sampled at time \(t+1 \) is the same as that of time \(t \) (stationary).
- If our stationary (target) distribution is \(p() \), then if imagine an ensemble of chains, they are in each state with (long-run) probability \(p() \).
 - On average, a switch from \(s1 \) to \(s2 \) happens as often as going from \(s2 \) to \(s1 \), otherwise, the percentage of states would not be stable
- If our stationary (target) distribution is \(p() \), what do the transition probabilities look like?
Detailed balance

- Detailed balance is defined by:
 \[p(z)T(z,z') = p(z')T(z',z) \]
 (We assume that \(T(\cdot) > 0 \))

- Detailed balance is a sufficient condition for a stationary distribution.

- Detailed balance is also referred to as reversibility.

Detailed balance (cont)

- Detailed balance (for \(p() \)) means that if our chain was generating samples from \(p() \), it would continue to do so.
 - We will address how it gets there shortly

- Does the Metropolis algorithm have detailed balance?

Detailed balance implies stationary

\[p(z) = \sum_{z'} p(z')T(z',z) \] \(\text{(marginalization)} \)

If we have detailed balance, then

\[p(z')T(z',z) = p^{\text{prev}}(z)T(z,z') \]

So,

\[p(z) = \sum_{z} p(z')T(z',z) = \sum_{z} p^{\text{prev}}(z)T(z,z') = p^{\text{prev}}(z') \]

Hence, detailed balance implies the distribution is stationary.

Metropolis Example

While not bored
\[
\{ \\
\text{Sample } q(z'|z^{(\text{prev})}) \\
\text{Accept with probability } A(z,z^{(\text{prev})}) = \min \left(1, \frac{p(z)}{p(z^{(\text{prev})})} \right) \\
\text{If accept, emit } z, \text{ otherwise, emit } z^{(\text{prev})}. \\
\} \\
\]

Same as \(\frac{p(z)}{p(z^{(\text{prev})})} \)
Metropolis Example

Recall that in Metropolis, \[A(z,z') = \min \left(1, \frac{p(z)}{p(z')} \right) \]

\[p(z')q(z|z')A(z,z') = q(z|z')\min\left(p(z'),p(z) \right) = q(z'|z)\min\left(p(z'),p(z) \right) \]

\[= p(z)q(z'|z)\min\left(1, \frac{p(z')}{p(z)} \right) \]

\[= p(z)q(z'|z)A(z',z) \]

When do our chains converge?

- Important theorem tells us that (for finite state spaces*) our chains converge to equilibrium under two relatively weak conditions.

 - (1) Irreducible
 - We can get from any state to any other state

 - (2) Aperiodic
 - The chain does not get trapped in cycles

- These are true for detailed balance which is sufficient, but not necessary for convergence.

*Infinite or uncountable state spaces introduces additional complexities.

Ergodic chains

- Different starting probabilities will give different chains

- We want our chains to converge (in the limit) to the same stationary state, regardless of starting distribution.

- Such chains are called ergodic, and the common stationary state is called the equilibrium state.

- Ergodic chains have a unique equilibrium.

Intuition behind ergodic chains

Let \(p^{(t)}(z) \) be the distribution at some time (e.g., initial distribution)

Let \(p^*(z) \) be the stationary distribution

Let \(p^{(t+1)}(z) = p^*(z) - q^{(t)}(z) \)

Note that the elements of \(p^{(t+1)}(z) \) and \(p^*(z) \) sum to one, and thus the elements of \(q(z) \) sum to zero.

Note also that \(q(z) \) is not a probability.
Intuition behind ergodic chains

Let $p^{(t)}(z)$ be the distribution at some time (e.g., initial distribution)

Let $p^*(z)$ be the stationary distribution

Let $p^{(t)}(z) = p^*(z) - q^{(t)}(z)$

$$p^{(t+1)}(z) = \sum_{z'} p^*(z') T(z, z') - \sum_{z'} q^{(t)}(z') T(z, z')$$

$$= p^*(z) - q^{(t+1)}(z)$$

Claim that $|q^{(t+1)}(z)| < |q^{(t)}(z)|$