
ISTA 410/510 Homework II

For contribution to the final grade, due dates, current late policy, and instructions for handing the 
assignment in, see the assignment web page. 

Create a PDF document with your answers and/or the results of any programs that you write. You should 
also hand in your programs, but I won’t necessarily look at them. Your PDF should be named 
<first_name>-<last_name>-<assignment>.pdf (e.g., kobus-barnard-hw2.pdf).  

You should explain, in your PDF, where the results come from (e.g., “These plots are the result of running 
the program hw1_part2.m with parameters 1,2,4, and 8 respectively.”). Please use this course as an 
opportunity to learn how to write better figure captions. They should tell the reader how to interpret the 
figures, and the answer to obvious questions the reader might have which are not readily available from 
the figure. 

For simplicity, problems are generally all worth the same, except ones marked by “+” that are expected to 
substantively more time consuming, and are worth double. Additional “+” means what you expect.

Questions marked by * are required for grad students only. They count as challenge problems for 
undergraduates. 

Questions marked by ** are challenge problems for both grads and undergraduates. 

Any non-challenge problem can be replaced by challenge problems with collective value is at least that of 
the problem being replace (e.g., an undergraduate might replace a non starred “+” problem with two “*” 
problems without “+”). Please make it clear that this is what you are doing (e.g., for a required problem 
you could answer “see optional problem #3”). The point here is to enable students to avoid problems that 
they feel are not instructive.

For a complete assignment, undergraduates need to hand in problems that have total value of at least 7. 
(There are 6 problems without “*”, one of which has a “+”). Grad students need four more. 

Extra problems (please indicated in your answer when you are doing an extra problem) are eligible for 
modest extra credit. The maximum score for an assignment will be capped at 120%. The maximum score 
for all assignments taken together is capped at 65/60. 

Hints or answers to many of these problems can be looked up. If you are stuck and make use of a 
resource, simply make a note of it. For example, you might say that you had a glance at the solution to the 
same or similar problem solution in a particular source, and then attempted to recreate for yourself. This 
is better than being completely stuck, or copying the answer blindly. 

Mathematical content. This is a mathematical subject and there is a wide variance in backgrounds of 
students who take this course. For example, there may be problems in the assignments which seem more 
difficult than they really are simply because you are not used to the kind of problem. In general, I am very 
willing to give hints, consider other work in exchange, and grade holistically, focused on effort and 
progress from whatever level you are at. However, this works best if you start the assignment early, and 
work through it steadily over time, rather than do the last minute thing. 



1. Consider throwing a 6 sided die two times in succession. Let A be the number of the first throw and 
B be the number of the second throw. Let S be the random variable that is the sum of the 
numbers.What is ($):

a) P(A=3, B=3 | S=6) 
b) P(S=6 | A=3, B=3)
c) P(A=1, B=1 | S=6)
d) P(A=1|S=2)
e) P(A=3|S=2)
f) P(A=2|S=6)
g) P (S=12)
h) P(S=6)

2. Answer 8.3 in Bishop reproduced below ($). In Bishop this problem is a double star one, but I don’t 
think it is so bad, and it has no stars for us.

3. (*) Consider these propositions for conditional independence: 

(A) P(X|Y,Z)=P(X|Z) or P(Y,Z)=0.

(B) P(Y|X,Z)=P(Y|Z) or P(X,Z)=0

(C) P(X,Y|Z)=P(X|Z)P(Y|Z)

Show that (A) implies (B) ($), that (A) implies (C) ($), and that (C) implies (A) ($). (By 
symmetry, the third case means that (C) also implies (B), so no need to show that).



(If you like, simply pretend that probabilities are never zero, rather than fretting about the 
special cases of P(X,Z) or P(Y,Z) being zero. I am not looking for a tight proof. The point of 
this problem is to get used to manipulating expressions using basic probability definitions.)

4. (*)  As the Bayesian in the following picture, what is the chances you will win the bet, under the 
assumption that the prior probability that the sun has exploded is ($): a) 1/6; b) 1/36; c) 1/1000; d) 
1/1000,000. Be sure to show your work ($)! Note that unlike the TB example in class, there are 3 
random variables here. You might find it easiest to marginalize out the throw of the two die at a 
convenient point. 

5.

a) Plot three univariate Gaussians on one graph. Specifically, plot Gaussians with means and 
variances (2, 0.2), (1, 0.5), and (0, 2) ($). Be sure to provide a caption.

b) Make a 3D plot of p(x,y) for a bivariate Gaussian with mean (0,0) and covariance matrix.
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($). Be sure to provide a caption.

6. For the bivariate Gaussian in 5(b), using numerical integration, approximate p(x) for a sensible 
stepping of x values and plot the result ($). Be sure to provide a caption. Does it have the shape you 
expect, and what is that shape ($)?

7. (**) Perhaps proof by programming is not for you. Show that for a bivariate Gaussian p(x,y), p(x) 
is also Gaussian ($). What do you expect the area of the curve to be ($)? It may be easier to work 
with the precision matrix which is the inverse of the covariance matrix and which is also 
symmetric. 

8. For the bivariate Gaussian above, and using the result of question 5, plot p(y|X=0.5) ($). Be sure to 
provide a caption. Does it have the shape you expect, and what is that shape ($)? What do you 
expect the area of the curve to be ($)?

9. (**) Perhaps proof by programming is not for you. Show that for a bivariate Gaussian p(x,y), p(x|y) 
is also Gaussian ($). It may be easier to work with the precision matrix which is the inverse of the 
covariance matrix and which is also symmetric.

10. (**) Transform (x,y) so that the the above Gaussian has diagonal covariance in a different space. A 
question on the previous homework might be relevant here. Report the transformation matrix, and 
redo the plots ($).  Be sure to have an informative caption.

11. (+) Implement the method covered in class for sampling a generic distribution. Use this to sample a 
univariate Gaussian distribution with mean 0 and variance 1. Plot histograms normalized to unit 
area of 10, 100, 1000, and 10000 samples ($). Plot the source distribution (the univariate Gaussian) 
on top of the histograms ($). 

12. (*) Using your code from the previous problem as a starting point, do the same for the Beta 
distributions with alpha=2 and beta=5 ($). 

13. (*) Consider the simplest D dimension Gaussian that have mean vector 0 and variance vector 1. 
Derive an expression, p(r) , for the probability mass at a radius r ($). In other words, p(r)Δr  is 

the probability that a sampled point is between r and r + Δr , where, for a D dimensional point, X, 
r2 = XTX . Plot p(r) for D=1, D=2, D=10, D=20, and D=30. Comment on the result ($). 

14. (**) The vision lab software has a straightforward C implementation of the Box-Muller algorithm 
for sampling simple Gaussian distributions. According to Wikipedia, the Ziggurat algorithm is 
faster. Investigate this conjecture in some way ($). 


