Some references for probability

(We will be closest to chapter two of K&F-posted)

Wasserman, "All of statistics" (Vision lab has a few copies that we can lend out).

Forsyth and Ponce chapter http://luthuli.cs.uiuc.edu/~daf/book/bookpages/pdf/probability.pdf

Your favorite intro to probability book (e.g., "Mathematical statistics and Data Analysis," by John Rice.)

Google (and WikiPedia)

Probability review

Formulas that you should be very comfortable with are marked by *****.

Interpretations of probability

- 1) Representation of expected frequency
- 2) Degree of belief

Basic terminology and rules

Space of outcomes (often denoted by Ω)

Event (subset of Ω)

Denote the space of measurable events (one we want to assign a probability to) by S. S must include \emptyset and Ω S is closed under set operations

 $\alpha,\beta\in S \implies \alpha\cup\beta\in S , \ \alpha\cap\beta\in S , \ \alpha^{C}=\Omega-\alpha\in S , \text{ etc.}$

Basic terminology and rules

A probability distribution P over (Ω, S) is a mapping from events in S to real values such that

If $a \in S$, $P(a) \ge 0$ $P(\Omega) = 1$ If $\alpha, \beta \in S$, and $a \cap b = \emptyset$, then $P(a \cup b) = P(a) + P(b)$

Basic terminology and rules

We can further derive additional familiar facts

If $a \in S$, $P(a) \in [0,1]$

 $P(\emptyset) = 0$

If $\alpha, \beta \in S$, then $P(a \cup b) = P(a) + P(b) - P(a \cap b)$

The probabilities over disjoint sets that cover $P(\Omega)$ sum to 1.

Basic terminology and rules

Conditional probability (definition)

$$P(A|B) \equiv \frac{P(A \cap B)}{P(B)} \qquad \qquad *$$

Example, what is the probability that you have rolled 2, given that you know you have rolled a prime number?

Basic terminology and rules

Conditional probability (definition)

$$P(A|B) \equiv \frac{P(A \cap B)}{P(B)}$$

Applying a bit of algebra,

$$P(A \cap B) = P(A)P(B|A)$$

In general, we have the chain (product) rule

 $P(A_{1} \cap A_{2}) = P(A_{1})P(A_{2}|A_{1})$ $P(A_{1} \cap A_{2} \cap \dots A_{N}) = P(A_{1})P(A_{2}|A_{1})P(A_{3}|A_{1} \cap A_{2}) \dots P(A_{N}|A_{1} \cap A_{2} \cap \dots A_{N-1})$

Basic terminology and rules

From before, we define conditional probability by

$$P(A|B) \equiv \frac{P(A \cap B)}{P(B)}$$

Applying a little bit more algebra,

 $P(A \cap B) = P(A)P(B|A)$ and $P(A \cap B) = P(B)P(A|B)$ and thus P(B)P(A|B) = P(A)P(B|A)and we get $P(A|B) = \frac{P(A)P(B|A)}{P(B)}$

Bayes rule *

Example

Probability of disease given symptoms

Suppose a TB test is 95% accurate

P(positive|TB) = 0.95 $P(\text{negative}|\widetilde{TB}) = 0.95$

What is P (TB | positive)?

Example (continued)

Probability of disease given symptoms

Suppose a TB test is 95% accurate Suppose that TB is in 0.1% of population

What is P (TB | positive)?

Example (continued)

 $P(TB \mid positive)$

 $=\frac{P(positive | TB)P(TB)}{P(positive)}$

P(positive | TB)P(TB)

P(positive | TB)P(TB) + P(positive | TB)P(TB)

 $P(TB \mid positive)$ $= \frac{P(positive \mid TB)P(TB)}{P(positive)}$ $= \frac{P(positive \mid TB)P(TB)}{P(positive \mid TB)P(TB) + P(positive \mid \widetilde{TB})P(\widetilde{TB})}$ $= \frac{(0.95)(0.001)}{(0.95)(0.001) + (0.05)(0.999)}$ $\cong 0.0187$

Random Variables

Random variables
Defined by functions mapping outcomes to values
By choice, whatever we are interested in
Typically denoted by uppercase letters (e.g., X)
Generic values are corresponding lower case letters
Shorthand: $P(x) = P(X=x)$
Value "type" is arbitrary (typically categorical or real)
Example (from K&F)
Outcomes are student grades (A,B,C)
Random variable G=f _{GRADE} (student)
$P(A) \equiv P(G = A) \equiv P(\{w \in \Omega : f_{GRADE}(w) = A\})$

Joint Distributions of Random Variables

Joint distribution of random variables

 $P(X,Y) \equiv P(X=x,Y=y) \equiv P(\{w \in \Omega : X(w) = x \text{ and } Y(w) = y\})$

*

Conditional definition, Bayes rule, chain rule all apply.

Marginal distributions ("sum rule")

 $P(X) = \sum_{Y} P(X,Y)$

Chain (product) rule (two variable case of chain rule)

$$P(X,Y) = P(X | Y)P(Y) \quad *$$

Normalization

Often we will deal with quantities or functions which are proportional to probabilities (OK if we just want argmax)

To convert such quantities to probabilities we normalize.

if
$$p(x) \propto P(X=x)$$
 then $P(X=x) = \frac{p(x)}{\sum_{x} p(x)}$

Example: $P(X|Y) \propto P(X,Y)$

$$P(X|Y) = \frac{P(X,Y)}{\sum_{X} P(X,Y)}$$

Conditional Independence

$$X \perp Y \mid Z \iff P(X \mid Y, Z) = P(X \mid Z) \text{ or } P(Y, Z) = 0$$

Equivalent, sometimes more convenient definition

$$X \perp Y \mid Z \quad \Leftrightarrow \quad P(X,Y \mid Z) = P(X \mid Z)P(Y \mid Z) \qquad *$$