

		Y				
		y ₁	y ₂			
X	x ₁	0.04	0.36	0.4		
	x ₂	0.30	0.30	0.6		
		0.34	0.66			
Arg m	ax P(x,y)	is (x ₁ , y ₂)	Arg max Arg max	P(x) is (x_2) P(y) is (y_2)		
Arg max $P(x,y)$ is not necessarily (Arg max $P(x)$, Arg max $P(y)$)						

Code for sampling a Bernoulli

a=rand()

if (a<u) return heads else return tails

Discrete Distributions (Binomial)

Probability distribution for getting m "heads" in N tosses.

$Bin(m N,\mu) = \begin{pmatrix} N \\ m \end{pmatrix} \bullet \underbrace{\mu^m (1-\mu)^{N-m}}_{M}$	
Number of Way to get <i>m</i> heads	Example
ways to get in N tosses m heads	<i>N</i> =3, <i>m</i> =2
n N tosses.	HHT
	HTH
(N) = N!	THH
where $\binom{m}{m} \equiv \frac{m}{(N-m)!m!}$	

Multi-outcome Bernoulli

Simple extensions to Bernoulli to multiple outcomes (e.g., a six sided die).

Let K be the number of outcomes.

Now we use vectors for u and x, *i.e.*, \mathbf{u} and \mathbf{x} .

x is a vector of 0's and exactly one 1 for observed outcome (e.g., rolling 3 with a 6 sided die is (0,0,1,0,0,0).

$$p(\mathbf{x} \mid \mathbf{u}) = \prod_{k=1}^{K} u_k^{x_k} \qquad \text{(note that } \sum_{k=1}^{K} u_k = 1\text{)}$$

Multinomial

Extension of binomial to multiple outcomes. Let K be the number of outcomes.

$$Mult(m_1, m_2, ..., m_K) = \begin{pmatrix} N \\ m_1 & m_2 & \dots & m_K \end{pmatrix} \prod_{k=1}^K \mu_k^{m_k}$$

where $\begin{pmatrix} N \\ m_1 & m_2 & \dots & m_K \end{pmatrix} = \begin{pmatrix} N! \\ \overline{m_1! & m_2! & \dots & m_K!} \end{pmatrix}$
and $\sum_{k=1}^K m_k = N$

Continuous Spaces

Outcome space is observation of real values (e.g., height, mass)

Example, a random variable, X, can take any value in [0,1] with equal probability.

We say that X is uniformly distributed over [0,1].

Here, P(X=x) = 0 (uncountable number of possibilities).

To deal with this, we use Probability Density Functions.

Probability Density Functions

 $p: \mathbb{R} \mapsto \mathbb{R}$ is a probability density function for X if $p(x) \ge 0$ and

$$\int_{Val(X)} p(x)dx = 1$$

$$P(a \le X \le b) = \int_{a}^{b} p(x)dx \qquad (\text{Probality of the event that } x \in [a,b])$$

$$P(X \in \Delta X) \cong p(x)|\Delta X| \qquad (\text{For small } \Delta X)$$
Note that $P \in [0,1]$ but $p(x)$ can be larger than 1.

Example one

A random variable is uniformly distributed between 0.4 and 0.6, and never occurs outside of that range.

$$p(x) = \begin{cases} \kappa & x \in [0.4, 0.6] \\ 0 & \text{otherwise} \end{cases}$$

$$\int_{0.4}^{0.6} p(x) dx = \int_{0.4}^{0.6} \kappa \, dx = (0.2) \kappa = 1$$

$$\kappa = \frac{1}{0.2} = 5 \quad \text{and thus} \quad p(x) = \begin{cases} 5 & x \in [0.4, 0.6] \\ 0 & \text{otherwise} \end{cases}$$

Example Three

A continuous random variable can take on the exact values 0.3 and 0.6 with equal probability, and nothing else.

This is really a discrete distribution in disguise.

This PDF is not a function, let alone a continuous function.

If we want to use a PDF to represent it, we can use the "generalized" function $\delta(x)$.

Delta "function" demo

Dirac delta function

The Dirac delta (generalized) function

 $\delta(x) = 0$, where $x \neq 0$

 $\int \delta(x) dx = 1$

 $\int \delta(x-a)f(x)dx = f(a)$

Example three (continued)

Recall our "function" which was the PDF of a continuous random variable that took the exact values 0.3 and 0.6 with equal probability, and nothing else.

$$p(x) = \frac{1}{2}\delta(x - 0.3) + \frac{1}{2}\delta(x - 0.6)$$

Joint Density Functions

Analogous to univariate case (illustrated with two variables)

 $\iint_{Val(X)\times Val(Y)} p(x,y) dx dy = 1$

$$P(a_X \le X \le b_X, a_Y \le Y \le b_Y) = \int_{a_Y}^{b_Y} \int_{a_X}^{b_X} p(x, y) dx dy$$

Example--- multivariate Gaussian

$$\mathbb{N}(\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{k}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp\left(\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) \qquad \text{k is the number of variables (dimension)}$$
If the variables are independent, then the covariance is diagonal
$$\mathbb{N}(\boldsymbol{\mu},\boldsymbol{\sigma}^2) = \frac{1}{(2\pi)^{\frac{k}{2}} \prod_{i=1}^{k} \sigma_i} \exp\left(\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T (diag(\sigma^2))^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

$$= \prod_{i=1}^{k} \mathbb{N}(\boldsymbol{\mu}_i, \sigma_i^2)$$

Gaussian Facts

For a multivariate Gaussian $p(\mathbf{x}_a, \mathbf{x}_b)$ with variables partitioned into \mathbf{x}_a and \mathbf{x}_b we have:

 $p(\mathbf{x}_a)$ is also Gaussian

and

 $p(\mathbf{x}_a | \mathbf{x}_b)$ is also Gaussian

Chapter 2.3 of Bishop has a very thorough treatment of the Gaussian distribution.