Example

P(x,.y,) =P(X=x AND Y=y)

Y

Y1 VP
X4 0.04 0.36
X, 0.30 0.30
Y
¥Yq
Xl 0.04 0.04/034
P(xly,)
Xy
0.30 0.30/0.34
P(0.34)

(Recall that P(xly1) is short hand for the probability
that the random variable X takes the value x, given
that the random variable Y has value y1)

Y P(x)=P(x, .y, +P(x, y,)
[i.e., sum across]
¥ Vp)
X4 0.04 0.36
X
X2 0.30 0.30

P(x)

0.34 0.66

(Recall that P(x) is short hand for the probability that the
random variable X takes the value x, similarly for P(y)).

Probabilistic Queries

Bold face because these
Organize variables into _ are vectors of variables
Evidence (observed), E /
Query (what you want to know), Y
Hidden (leftover), X  (for completeness)

Generic Query: P(YIE)
This leads to a distribution over Y given the evidence
Note that X is marginalized out
We can use this to make a decision
Simplest is most probable, i.e., Argmax P(Y,E)
Y

MAP Query (most probably configuration of variables):
MAP(W | E)= Argmax P(W.E) (W=Y UX)




Y1 VP

X; | 004 0.36 04

X, | 030 030 0.6

0.34 0.66

Arg max P(x,y) is (x;,,) Arg max P(x) is (x,)

Arg max P(y) is (y,)

Arg max P(x.y) is not necessarily (Arg max P(x), Arg max P(y))

This can cause confusion. If P(Y) is zero,
the other case cannot be used (divide by
zero). However, in this case, Y never

.
ReVIeW happens, and so we (a priori) have a

choice to declare whether X is
independent from Y or not. However,

Independence under scrutiny, the choice does make
sense, and allows consistency with the
second definition. Note that the second

formula works in this (weird) case because
if P(Y)=0, then P(X,Y) is also 0.

/

X1y o PX[Y)=PX) orPY)=0 *

X1lY & PX)Y)=PX)PY) .

Note that Bishop uses || instead of L

Review
Conditional Independence

X1lYlZ & PX

Equivalent, sometimes more convenient definition

X1YIZ o PXY|Z)=PXIZ)PY1Z) *

Y.Z) =P(X1Z) or P(Y.,Z)=0 %

Discrete Distributions (Bernoulli)

xe{0,1} (e.g., 1 is "heads" and O is "tails")

p(x=1u)=p  and p(x=0Ju)=1-pu

Study this trick!
Bern(x )= p*(1-p)"™ '
x is an indicator variable which is
constrained to be “1” for exactly on
value, and “0” for the rest.




Code for sampling a Bernoulli

a=rand()

if (a<u) return heads
else return tails

Multi-outcome Bernoulli

Simple extensions to Bernoulli to multiple

outcomes (e.g., a six sided die).
Let K be the number of outcomes.
Now we use vectors for # and x, i.e., u and X.

x is a vector of 0's and exactly one 1 for observed
outcome (e.g., rolling 3 with a 6 sided die is (0,0,1,0,0,0).

K K
pxlu)=[Juy (note that Y u, =1)
k=1

k=1

Discrete Distributions (Binomial)

Probability distribution for getting m "heads" in N tosses.

Bin{m.u) = ( " J -

Probility of each

Number of Wa};\// t:) %51 ‘m heads Example
S heads N=3, m=2
inN tosses.
t HHT
HTH
N N! THH
where =—— "
m (N—-m)!'m!
Multinomial

Extension of binomial to multiple outcomes.

Let K be the number of outcomes.

N K
Mult(m,,m,, ..., m;)= I I e
k-1

myom, .. My

N N!
where =
myom, . my m! my! ... mg!

K
and ka =N
k=1




Here, P(X=x) =0

Continuous Spaces

Outcome space is observation of real values (e.g., height, mass)

Example, a random variable, X, can take any value in [0,1]

with equal probability.

We say that X is uniformly distributed over [0,1].

To deal with this, we use Probability Density Functions.

(uncountable number of possibilities).

Example one

A random variable is uniformly distributed between 0.4 and 0.6,

and never occurs outside of that range.

p(x)= Kk xe€[04,0.6]
0 otherwise

0.6 0.6
[ poydx =] kdx=(02)x =1
04 04

1
K=E=5 and thus p(x):{

5 x€[04,0.6]
0 otherwise

Probability Density Functions

p:R— R is a probability density function for X if p(x) =20 and

j p(x)dx=1

Val(X)

b
Pa<X<bh)= J p(x)dx (Probality of the event that x € [a,b])

P(X € AX) = p(x)|AX] (For small AX)

Note that P €[0,1] but p(x) can be larger than 1.

Example two

The univariate Gaussian (or Normal) distribution

N(u,0%)=

1
e
oN2m 1.0 T [ T

[T

H=0, 0?=0.2, =]
[=0, 0?=1.0, ==

pH=0, 0%=5.0, ]
H=-2, 0?=0.5, =




Example Three

A continuous random variable can take on the exact values

0.3 and 0.6 with equal probability, and nothing else.

This is really a discrete distribution in disguise.

This PDF is not a function, let alone a continuous function.

If we want to use a PDF to represent it, we can use the

"generalized" function d(x).

Delta “function” demo

a=1/1

Dirac delta function

The Dirac delta (generalized) function

6(x)=0, where x#0

J5(x)dx=1

[8-a)fx)dx = fla)

Example three (continued)

Recall our "function" which was the PDF of a continuous random variable
that took the exact values 0.3 and 0.6 with equal probability, and nothing else.

p(x)= %5(x—0.3)+%5(x—0.6)




Joint Density Functions

Analogous to univariate case (illustrated with two variables)

[l paydrdy=1

Val(X)xVal(Y)

by by
Play,<X<b,,a,<Y<b,)= J. _[p(x,y)dxdy

dy ayx

Marginalization

p(x)= Jp(x,y)dy

Example--- multivariate Gaussian

1 1 _ :
N(y,X)= fexp(_(x_#) > (X_“)j k is the number of

(27r)§|)3|5 2 variables (dimension)

If the variables are independent, then the covariance is diagonal

1 1 T —1
N ,U.,O'2 =Tex —(X—,u) dia (0'2) (X—ﬂ)
) o e o3t 1)

i=1

k
=1IN(u.07)
i=1

Conditional Distributions

p(ylx)= p(x.y) where p(x)# 0
p(x)
Can get this by
marginalizing

p(x)= fp(x,y)dy




Gaussian Facts

For a multivariate Gaussian p(x, X, ) with
variables partitioned into X, and X, we have:

p(x,) is also Gaussian
and
p(x, Ix,) is also Gaussian

Chapter 2.3 of Bishop has a very thorough
treatment of the Gaussian distribution.




