

Probabilistic Queries

Organize variables into
Bold face because these are vectors of variables
Evidence (observed), E
Query (what you want to know), \mathbf{Y}
Hidden (leftover), \mathbf{X} (for completeness)

Generic Query: $\mathrm{P}(\mathbf{Y} \mid \mathbf{E})$
This leads to a distribution over Y given the evidence
Note that X is marginalized out
We can use this to make a decision
Simplest is most probable, i.e., $\underset{\mathbf{Y}}{\operatorname{Argmax}} P(\mathbf{Y}, \mathbf{E})$
MAP Query (most probably configuration of variables):
$M A P(\mathbf{W} \mid \mathbf{E})=\underset{\mathbf{w}}{\operatorname{Argmax}} P(\mathbf{W}, \mathbf{E}) \quad(\mathbf{W}=\mathbf{Y} \cup \mathbf{X})$

Y			
	y_{1}	y_{2}	0.4
$\mathrm{X} \quad \mathrm{X}_{1}$	0.04	0.36	
	0.30	0.30	0.6
	0.34	0.66	
$\operatorname{Arg} \max \mathrm{P}(\mathrm{x}, \mathrm{y})$ is $\left(\mathrm{x}_{1}, \mathrm{y}_{2}\right)$		Arg max $\mathrm{P}(\mathrm{x})$ is $\left(\mathrm{x}_{2}\right)$	
		Arg max $\mathrm{P}(\mathrm{y})$ is (y_{2})	
$\operatorname{Arg} \max \mathrm{P}(\mathrm{x}, \mathrm{y})$ is not necessarily ($\operatorname{Arg} \max \mathrm{P}(\mathrm{x}), \operatorname{Arg} \max \mathrm{P}(\mathrm{y})$)			

Review

Conditional Independence

$$
X \perp Y \mid Z \quad \Leftrightarrow \quad P(X \mid Y, Z)=P(X \mid Z) \quad \text { or } \quad \mathrm{P}(\mathrm{Y}, \mathrm{Z})=0 \quad \text { * }
$$

Equivalent, sometimes more convenient definition

$$
X \perp Y \mid Z \quad \Leftrightarrow \quad P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z) \quad \text { * }
$$

Independence

This can cause confusion. If P (Y) is zero,
the other case cannot be used (divide by the other case cannot be used (divide by
zero). However, in this case, Y never zero). However, in this case, Y hever
happens, and so we (a priori) have a happens, and so we (a priori) ha
choice to declare whetter X is independent trom Yor not. However
inder scrutiny, the chooice does under scrutiny, the choice does make
sense, and lilows consistency with the
seco
 $(Y)=0$, then $P(X, Y)$ is also 0 .

$X \perp Y \quad \Leftrightarrow \quad P(X \mid Y)=P(X) \quad$ or $\mathrm{P}(\mathrm{Y})=0 \quad *$
$X \perp Y \quad \Leftrightarrow \quad P(X, Y)=P(X) P(Y)$
*

Note that Bishop uses II instead of \perp

Discrete Distributions (Bernoulli)

```
x\in{0,1} (e.g., 1 is "heads" and 0 is "tails")
```

$\mathrm{p}(x=1 \mid \mu)=\mu \quad$ and $\quad \mathrm{p}(x=0 \mid \mu)=1-\mu$
$\operatorname{Bern}(x \mid \mu)=\mu^{x}(1-\mu)^{(1-x)}$
Study this trick!
x is an indicator variable which is constrained to be " 1 " for exactly on value, and " 0 " for the rest.

Code for sampling a Bernoulli

```
a=rand()
if (a<u) return heads
else return tails
```


Multi-outcome Bernoulli

Simple extensions to Bernoulli to multiple
outcomes (e.g., a six sided die).
Let K be the number of outcomes.
Now we use vectors for u and x, i.e., \mathbf{u} and \mathbf{x}.
\mathbf{x} is a vector of 0 's and exactly one 1 for observed outcome (e.g., rolling 3 with a 6 sided die is $(0,0,1,0,0,0)$.
$p(\mathbf{x} \mid \mathbf{u})=\prod_{k=1}^{K} u_{k}^{x_{k}} \quad$ (note that $\left.\sum_{k=1}^{K} u_{k}=1\right)$

Discrete Distributions (Binomial)

Probability distribution for getting m "heads" in N tosses.

$$
\begin{aligned}
& \operatorname{Bin}(m \mid N, \mu)=\underbrace{\binom{N}{m} \cdot \underbrace{\mu^{m}(1-\mu)^{N-m}}_{\begin{array}{c}
\text { Probility of each } \\
\text { way tog oet } m \text { heads }
\end{array}}}_{\substack{\text { Number of } \\
\text { waysto get } \\
\text { m heads } \\
\text { in } N \text { tosses. }}} \\
& \text { where }\binom{N}{m} \equiv \frac{N!}{(N-m)!m!}
\end{aligned}
$$

Multinomial

Extension of binomial to multiple outcomes.
Let K be the number of outcomes.
$\operatorname{Mult}\left(m_{1}, m_{2}, \ldots, m_{K}\right)=\left(\begin{array}{cccc} & N & \\ m_{1} & m_{2} & \ldots & m_{K}\end{array}\right) \prod_{k-1}^{K} \mu_{k}^{m_{k}}$
where $\left(\begin{array}{cccc} & N & \\ m_{1} & m_{2} & \ldots & m_{K}\end{array}\right)=\left(\begin{array}{ccc}\frac{N!}{m_{1}!} m_{2}! & \ldots & m_{K}!\end{array}\right)$
and $\sum_{k=1}^{K} m_{k}=N$

Continuous Spaces

Outcome space is observation of real values (e.g., height, mass)

Example, a random variable, X , can take any value in $[0,1]$ with equal probability.

We say that X is uniformly distributed over $[0,1]$.

Here, $\mathrm{P}(\mathrm{X}=\mathrm{x})=0 \quad$ (uncountable number of possibilities).

To deal with this, we use Probability Density Functions.

Example one

A random variable is uniformly distributed between 0.4 and 0.6 , and never occurs outside of that range.
$p(x)=\left\{\begin{array}{cc}\kappa & x \in[0.4,0.6] \\ 0 & \text { otherwise }\end{array}\right.$
$\int_{0.4}^{0.6} p(x) d x=\int_{0.4}^{0.6} \kappa d x=(0.2) \kappa=1$
$\kappa=\frac{1}{0.2}=5 \quad$ and thus $\quad p(x)=\left\{\begin{array}{cc}5 & x \in[0.4,0.6] \\ 0 & \text { otherwise }\end{array}\right.$

Probability Density Functions

$p: \mathbb{R} \mapsto \mathbb{R}$ is a probability density function for X if $p(x) \geq 0$ and
$\int_{\operatorname{Val}(X)} p(x) d x=1$
$P(a \leq X \leq b)=\int_{a}^{b} p(x) d x \quad$ (Probality of the event that $\left.\mathrm{x} \in[\mathrm{a}, \mathrm{b}]\right)$
$P(X \in \Delta X) \cong p(x)|\Delta X| \quad$ (For small $\Delta X)$

Note that $\mathrm{P} \in[0,1]$ but $p(x)$ can be larger than 1 .

Example two

The univariate Gaussian (or Normal) distribution
$\mathbb{N}\left(\mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

Example Three

A continuous random variable can take on the exact values 0.3 and 0.6 with equal probability, and nothing else.

This is really a discrete distribution in disguise.

This PDF is not a function, let alone a continuous function.

If we want to use a PDF to represent it, we can use the "generalized" function $\delta(x)$.

Delta "function" demo

Example three (continued)

Recall our "function" which was the PDF of a continuous random variable that took the exact values 0.3 and 0.6 with equal probability, and nothing else. $p(x)=\frac{1}{2} \delta(x-0.3)+\frac{1}{2} \delta(x-0.6)$

Joint Density Functions

Analogous to univariate case (illustrated with two variables)
$\iint_{\operatorname{Val}(X) \times \operatorname{Val}(Y)} p(x, y) d x d y=1$
$P\left(a_{X} \leq X \leq b_{X}, a_{Y} \leq Y \leq b_{Y}\right)=\int_{a_{Y}}^{b_{Y}} \int_{a_{X}}^{b_{X}} p(x, y) d x d y$

Example--- multivariate Gaussian

$\mathbb{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{\frac{k}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp \left(\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) \quad \begin{aligned} & k \text { is the number of } \\ & \text { variables (dimension) }\end{aligned}$

If the variables are independent, then the covariance is diagonal
$\mathbb{N}\left(\mu, \sigma^{2}\right)=\frac{1}{(2 \pi)^{\frac{k}{2}} \prod_{i=1}^{k} \sigma_{i}} \exp \left(\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T}\left(\operatorname{diag}\left(\sigma^{2}\right)\right)^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$
$=\prod_{i=1}^{k} \mathbb{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$

Conditional Distributions

$$
\begin{array}{ll}
p(y \mid x)=\frac{p(x, y)}{p(x)} & \text { where } p(x) \neq 0 \\
& \begin{array}{l}
\text { Can get this by } \\
\text { marginalizing }
\end{array} \\
p(x)=\int_{-\infty}^{\infty} p(x, y) d y
\end{array}
$$

Gaussian Facts

For a multivariate Gaussian $\mathrm{p}\left(\mathbf{x}_{a}, \mathbf{x}_{b}\right)$ with variables partitioned into \mathbf{x}_{a} and \mathbf{x}_{b} we have:
$\mathrm{p}\left(\mathbf{x}_{a}\right)$ is also Gaussian
and
$\mathrm{p}\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)$ is also Gaussian

Chapter 2.3 of Bishop has a very thorough treatment of the Gaussian distribution.

