
Example
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P(x1, y2) = P(X= x1 AND Y= y2)

X

Y

0.04! ! 0.36
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0.6

P(x1)=P(x1,y1)+P(x1,y2)
 [i.e., sum across]

0.34 0.66

(Recall that P(x) is short hand for the probability that the 
random variable X takes the value x, similarly for P(y)).

P(x2)

P(x)

P(x1)

X

Y

0.04! !

0.30! !

y1

x1

x2

P(0.34)

P(x|y1)
0.04 / 0.34 
! !

0.30 / 0.34 
! !

(Recall that P(x|y1) is short hand for the probability 
that the random variable X takes the value x, given 
that the random variable Y has value y1)

Probabilistic Queries

Organize variables into
Evidence (observed), E
Query (what you want to know), Y
Hidden (leftover), X     (for completeness)

Generic Query:   P(Y|E) 
This leads to a distribution over Y given the evidence
Note that X is marginalized out
We can use this to make a decision
Simplest is most probable, i.e., 

MAP Query (most probably configuration of variables):      

Bold face because these 
are vectors of variables

MAP W |E( )= Argmax
w

P(W,E)         (W=Y!X)

Argmax
Y

P(Y,E)
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Y

0.04! ! 0.36

0.30! ! 0.30

y1 y2

x1

x2

0.4
0.6

0.34 0.66

Arg max P(x,y) is (x1, y2)
Arg max P(x) is (x2)

Arg max P(y) is (y2)

Arg max P(x,y)  is not necessarily (Arg max P(x), Arg max P(y))  

Independence

X ! Y      "     P(X Y ) != P(X)      or  P(Y)=0

X ! Y      "     P(X,Y ) != P(X)P(Y )

*

*

 Note that Bishop uses !  instead of !

This can cause confusion. If P(Y) is zero, 
the other case cannot be used (divide by 
zero). However, in this case, Y never 
happens, and so we (a priori) have a 
choice to declare whether X is 
independent from Y or not. However, 
under scrutiny, the choice does make 
sense, and allows consistency with the 
second definition. Note that the second 
formula works in this (weird) case because 
if P(Y)=0, then P(X,Y) is also 0. 

Review

Conditional Independence

X ! Y | Z      "     P(X Y ,Z ) != P(X | Z )      or   P(Y,Z)=0

*
Equivalent, sometimes more convenient definition

X ! Y | Z      "     P(X,Y Z ) != P(X | Z )P(Y | Z )

*

Review
Discrete Distributions (Bernoulli)

x ! 0,1{ }           (e.g., 1 is "heads" and 0 is "tails")

p x = 1 µ( ) = µ        and   p x = 0 µ( ) = 1" µ  

Bern(x | µ) = µ x 1" µ( ) 1"x( ) Study this trick! 

x is an indicator variable which is 
constrained to be “1” for exactly on 
value, and “0” for the rest. 



Code for sampling a Bernoulli

a=rand()

if (a<u) return heads
else return tails

Discrete Distributions (Binomial)

 

Probability distribution for getting m "heads" in N  tosses.

Bin m N ,µ( ) = N
m
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Example
N=3, m=2
" HHT
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  THH

Multi-outcome Bernoulli

Simple extensions to Bernoulli to multiple 
outcomes (e.g., a six sided die). 

Let K be the number of outcomes.

Now we use vectors for u  and x,!i.e.,!u and x.

x is a vector of 0's and exactly one 1 for observed 
outcome (e.g., rolling 3 with a 6 sided die is (0,0,1,0,0,0).

p(x | u) = uk
xk

k=1

K

!           (note that uk
k=1

K

" = 1)

Multinomial

Extension of binomial to multiple outcomes. 
Let K be the number of outcomes.

Mult(m1,m2 ,!...,!mK ) =
N

m1 !!m2 !!!...!!!mK
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Continuous Spaces

Outcome space is observation of real values (e.g., height, mass) 

Example, a random variable, X,  can take any value in [0,1] 
with equal probability.

We say that X is uniformly distributed over [0,1].

Here, P(X=x) = 0      (uncountable number of possibilities).

To deal with this, we use Probability Density Functions.

Probability Density Functions

 

p :!"!  is a probability density function for X if p(x) ! 0 and 

p(x)dx = 1
Val (X )
"

P(a # X # b) = p(x)dx
a

b

"         (Probality of the event that x $[a,b])

P(X $%X) & p(x) %X            (For small %X)

Note that P $[0,1] but p(x) can be larger than 1. 

Example one

A random variable is uniformly distributed between 0.4 and 0.6, 
and never occurs outside of that range. 

p(x) = !  x "[0.4,0.6]
0 otherwise

#
$
%

&%

p(x)dx =
0.4

0.6

' ! dx = 0.2( )
0.4

0.6

' ! = 1

! =
1

0.2
= 5      and thus    p(x) = 5  x "[0.4,0.6]

0 otherwise
#
$
%

&%
 

Example two

 

The univariate Gaussian (or Normal) distribution

!(µ,! 2 ) = 1
! 2"

e
# ! x#µ( ) 2

2! 2

 



Example Three

A continuous random variable can take on the exact values
0.3 and  0.6 with equal probability, and nothing else. 

This is really a discrete distribution in disguise.

This PDF is not a function, let alone a continuous function.

If we want to use a PDF to represent it, we can use the
"generalized" function ! (x).
 

Delta “function” demo

Dirac delta function

The Dirac delta (generalized) function

! (x) = 0,   where x " 0

! (x)dx# = 1

! (x $ a) f (x)dx# = f (a)

 

Example three (continued)

Recall our "function" which was the PDF of a continuous random variable 
that took the exact values 0.3 and  0.6 with equal probability, and nothing else. 

p(x) = 1
2
! (x " 0.3)+ 1

2
! (x " 0.6)

 



Joint Density Functions

Analogous to univariate case (illustrated with two variables) 

p(x, y)dxdy = 1
Val (X )!Val (Y )
""

P(aX # X # bX , aY #Y # bY ) = p(x, y)dxdy
aX

bX

"
aY

bY

"  

Example--- multivariate Gaussian

 

! µ,!( ) = 1

2"( )
k
2 !
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exp 1
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x # µ( )T ! #1 x # µ( )$
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If the variables are independent, then the covariance is diagonal

k is the number of 
variables (dimension)

Marginalization

p(x) = p(x, y)dy
!"

"

#

Conditional Distributions

p(y | x) = p(x, y)
p(x)

     where p(x) ! 0

p(x) = p(x, y)dy
!"

"

#

Can get this by 
marginalizing



Gaussian Facts

For a multivariate Gaussian p(xa , xb ) with 
variables partitioned into xa  and xb  we have:

p(xa ) is also Gaussian

and 

p(xa | xb ) is also Gaussian

Chapter 2.3 of Bishop has a very thorough 
treatment of the Gaussian distribution. 


