
Continuous Spaces

Outcome space is observation of real values (e.g., height, mass) 

Example, a random variable, X,  can take any value in [0,1] 
with equal probability.

We say that X is uniformly distributed over [0,1].

Here, P(X=x) = 0      (uncountable number of possibilities).

To deal with this, we use Probability Density Functions.

Review

Probability Density Functions

 

p :!"!  is a probability density function for X if p(x) ! 0 and 

p(x)dx = 1
Val (X )
"

P(a # X # b) = p(x)dx
a

b

"         (Probality of the event that x $[a,b])

P(X $%X) & p(x) %X            (For small %X)

Note that P $[0,1] but p(x) can be larger than 1. 
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Example one

A random variable is uniformly distributed between 0.4 and 0.6, 
and never occurs outside of that range. 

p(x) = !  x "[0.4,0.6]
0 otherwise
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= 5      and thus    p(x) = 5  x "[0.4,0.6]

0 otherwise
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Example two

 

The univariate Gaussian (or Normal) distribution
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Multivariate Gaussian
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If the variables are independent, then the covariance is diagonal

k is the number of variables (dimension)

IE, simply the product of univariate normals

Review

Conditional Distributions

p(y | x) = p(x, y)
p(x)

     where p(x) ! 0

p(x) = p(x, y)dy
!"

"
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Can get this by 
marginalizing
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Gaussian Facts

For a multivariate Gaussian p(xa , xb ) with 
variables partitioned into xa  and xb  we have:

p(xa ) is also Gaussian

and 

p(xa | xb ) is also Gaussian

Chapter 2.3 of Bishop has a very thorough 
treatment of the Gaussian distribution. 
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Expectation

Ep X[ ] = x !P(x)
x
"         (discrete)

Ep X[ ] = x ! p(x) dx#        (continuous)

Ep X +Y[ ] = Ep X[ ]+ Ep Y[ ]

Implicit definition of a new random variable



Variance

Var(X) = Ep X ! Ep X[ ]( )2"
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Var(X +Y ) =Var(X)+Var(Y )     (when X (  Y)

Var(aX) = a2 )Var(X)

Standard deviation, * X = Var(X)

Recall that this is 
our symbol for 
independent.

Sampling Continuous Distributions

• Suppose you want to generate samples from (i.e., simulate a 
probability distribution). 

• The typical tool at your disposal is a pseudo random 
number generator returning approximately uniformly 
distributed rational numbers in [0,1]

• Sampling Bernoulli processes is straightforward
• Variants of uniform distributions are also easy
• Example: p(x) = 5  x ![0.4,0.6]

0 otherwise
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Sampling Continuous Distributions

• N(0,1) is less obvious (there are standard fast methods)
• A general approach for sampling a continuous distribution

(sometimes call inverse transformation sampling) is based 
on the cumulative distribution function, CDF, denoted 
by!F(x) 

Cumulative Distribution Function

F(x) = P(X ! x)

= p(x)dx
"#

x

$     (continuous distributions)



Sampling Continuous Distributions
We know how to sample y uniformly from [0,1]

We want to map y! x "[#$,$] where is x distributed as p x( )

For simplicity, map them monotonically (bigger y! bigger x) 

All samples in U=[0,y] should map to total probability y over p(x).

Accounts for 0.3 
probability mass

sample
uniformly

For simplicity, map them monotonically (bigger y! bigger x) 
All samples within U=[0,y] should map to total probability y from p(x).

We know how to sample y uniformly from [0,1]
We want to map y! x "[#$,$] where is x distributed as p x( )

F(x)

F(x) = p( !x )d !x
"#

x
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Sampling Continuous Distributions
We know how to sample y uniformly from [0,1]

We want to map y! x "[#$,$] where is x distributed as p x( )

For simplicity, map them monotonically (bigger y! bigger x) 

All samples in U=[0,y] should map to total probability y in p(x)

So U=[0, y] maps into P = [-$, x], where y= p( %x )d %x
#$

x

& = F x( )

In other words, x = F#1 y( )

Sampling Continuous Distributions

• To sample a distribution p(x)   (crude instructional algorithm)

 

Prepare an approximation of F(x)
in a vector F=(x1, x2, x3, ... , xN )

Loop

    sample y![0,1]
  find i so that F(xi)< y and F(xi+1)> y

report (xi +xi+1) / 2



Estimating the mean of a univariate Gaussian
Example (from Bishop, PRML)

Assume that the variance is known.
Given data points xi , what is the "best" estimate for the mean?

Think for a moment about the joint distribution of the mean
and the observations (both are random variables)
i.e., we are interested in p u,{xi}( )

The question is particularly about the conditional density p u {xi}( )

Estimating the mean of a univariate Gaussian
Example (from Bishop, PRML)

The question is about the conditional density p u {xi}( )

p u {xi}( )! p {xi} u( )      (assuming uniform prior)

p {xi} u( ) = p xi u( )
i
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"     (remember, variance is a known constant)

p u {xi}( )! p {xi} u( )      (assuming uniform prior)

p {xi} u( ) = p xi u( )
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To find a "best" answer, we can adjust u  to make the above likelihood  big

uML = argmax
u

p u xi{ }( )( )

We can maximize the likelihood by minimizing the negative log

We can maximize the likelihood by minimizing the negative log

! log p u xi{ }( )( ) = ! log e
!
xi!u( )2
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i
#

$

%
&

'

(
) * xi ! u( )2

i
+

uML = argmin
u

xi ! u( )2
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Differentiating and setting to zero reveals that 

u = 1
N

xi+


