Review

Continuous Spaces
Outcome space is observation of real values (e.g., height, mass)

Example, a random variable, X, can take any value in [0,1]

with equal probability.
We say that X is uniformly distributed over [0,1].
Here, P(X=x) =0  (uncountable number of possibilities).

To deal with this, we use Probability Density Functions.
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Example one

A random variable is uniformly distributed between 0.4 and 0.6,

and never occurs outside of that range.

p(x)= Kk xe€[04,0.6]
0 otherwise

0.6 0.6
[ poydx =] kdx=(02)x =1
04 04

1
K=E=5 and thus p(x):{

5 x€[04,0.6]
0 otherwise
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Probability Density Functions
p:R— R is a probability density function for X if p(x) =20 and

j p(x)dx=1

Val(X)
b
Pa<X<bh)= J p(x)dx (Probality of the event that x € [a,b])

P(X € AX) = p(x)|AX] (For small AX)

Note that P €[0,1] but p(x) can be larger than 1.
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Example two
The univariate Gaussian (or Normal) distribution
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Review ) ) .
Multivariate Gaussian
N(u,2)=%exp(%(x—uyl"(x—p)) v i
(27)z|Z]2 ]

k is the number of variables (dimension)

If the variables are independent, then the covariance is diagonal

N(g0?)= +exp(%(x — )’ (diag(c®)) " (x~ /,L))
(2n):[]o. 3

1

k
=[[N(x.07)
i=1

IE, simply the product of univariate normals
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Gaussian Facts

For a multivariate Gaussian p(x, X, ) with
variables partitioned into X, and X, we have:

p(x,) is also Gaussian
and

p(x, Ix,) is also Gaussian

Chapter 2.3 of Bishop has a very thorough
treatment of the Gaussian distribution.
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Conditional Distributions

p(ylx)= p(x.y) where p(x)# 0
p(x)
Can get this by
marginalizing
p(x)= fp(x,y)dy
Expectation

E,[X]=Yx-P(x)  (discrete)

E, [X ] = Jx - p(x) dx (continuous)

E,|X+Y]=E,[X]+E,[Y]

N\

Implicit definition of a new random variable




Variance Recall that this is Sampling Continuous Distributions

our symbol for

independent. i i
* Suppose you want to generate samples from (i.e., simulate a

\ probability distribution).
* The typical tool at your disposal is a pseudo random
number generator returning approximately uniformly

Var(X)=E, [(X— E, [X])Z}

Var(X+Y)=Var(X)+Var(Y) (whenX 1 Y) distributed rational numbers in [0,1]
) e Sampling Bernoulli processes is straightforward
Var(aX)=a"-Var(X) * Variants of uniform distributions are also easy

* Example: p(y)= 5 x€[04,0.6]

Standard deviation, o, =+/Var(X) 0 otherwise
Sampling Continuous Distributions Cumulative Distribution Function

N(0,1) is less obvious (there are standard fast methods)

= <
A general approach for sampling a continuous distribution F(x)=P(X<x)

(sometimes call inverse transformation sampling) is based h . e
on the cumulative distribution function, CDF, denoted N .[ p(x)dx  (continuous distributions)
by F(x) h

Px(X)




Sampling Continuous Distributions

We know how to sample y uniformly from [0,1]
We want to map y = x €[—oo,c0] where is x distributed as p(x)
For simplicity, map them monotonically (bigger y = bigger x)

All samples in U=[0,y] should map to total probability y over p(x).

We know how to sample y uniformly from [0,1]

We want to map y = x € [—o,c0] where is x distributed as p(x)

For simplicity, map them monotonically (bigger y = bigger x)

All samples within U=[0,y] should map to total probability y from p(x).

Sampling Continuous Distributions
We know how to sample y uniformly from [0,1]
We want to map y = x €[—co,00] where is x distributed as p(x)
For simplicity, map them monotonically (bigger y = bigger x)
All samples in U=[0,y] should map to total probability y in p(x)
So U=[0,y] maps into P =[-c0,x], where y=JL p(x)dx’ = F(x)

In other words, x = F' ()
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Accounts for 0.3
probability mass

Sampling Continuous Distributions

* To sample a distribution p(x) (crude instructional algorithm)

Prepare an approximation of F(x)

in a vector F=(x,,X,,X;, ... ,Xy)

Loop
sample ye[0,1]
find i so that F(x,)<y and F(x,,)>y
report (x,+x,,)/2




Example (from Bishop, PRML)
Estimating the mean of a univariate Gaussian

Assume that the variance is known.
Given data points x;, what is the "best" estimate for the mean?

Think for a moment about the joint distribution of the mean

and the observations (both are random variables)

i.e., we are interested in p(u,{xi})

The question is particularly about the conditional density p(u| {xi})

Example (from Bishop, PRML)
Estimating the mean of a univariate Gaussian

The question is about the conditional density p(u|{xi})

p(u|{xl.}) o< p({x,}|u)  (assuming uniform prior)

p({x,}‘u)z HP(X,-‘u)

_(x=w)’
o< He 20° (remember, variance is a known constant)
i

p(u|{x,.}) o< p({xi}|u) (assuming uniform prior)
ple3l)=TTp(x )

(x:

“[le
i

,u)
O_Z

To find a "best" answer, we can adjust u to make the above likelihood big

Uy, = argumax( p(u{x}))

We can maximize the likelihood by minimizing the negative log

We can maximize the likelihood by minimizing the negative log

_10g(p(u|{x,.})) = —log[lj[ew] o Z'(xi B u)z
Uy, = arg:nin[zi“(xi _”)2J

Differentiating and setting to zero reveals that

u=y 2




