
Estimating the mean of a univariate Gaussian
Example (from Bishop, PRML)

In 2D, this is like estimating a probability distribution for the center
of a dart board from where the darts go. 
 
We assume a Guassian model for the distribution of darts given the mean.

Bayes rule provided a way to consider the model given the data. 

Then we optimized that formula to derive one estimate for the mean
(the most likely one, i.e., the max of the p.d.f.)

No one was surprised that the mean of the data was the answer. 

(Assume the variance is known)
Estimating the mean of a univariate Gaussian

Example (from Bishop, PRML)

(Assume the variance is known)
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Review of the math 
from previous lecture 

• Recall the trick of maximizing the p.d.f. by minimizing the negative log
• The Gaussian form for the likelihood lead to a least-squares problem
• Least-squares solutions are tightly connected to assuming Gaussian 

distribution for the random effects (noise)
• If the random part is not Gaussian, then squared error may not make sense
• Squared error and Gaussian assumptions are mathematically very 

convenient but they are very sensitive to this assumption
• The least-squares solution leads to the average as being the “best” way to 

characterize a group of independent numbers, but there are other answers.
– Minimum absolute value for error
– Median

Estimating the mean of a univariate Gaussian
(Additional comments---well worth understanding)

Example in class: (0,8,10) 

Estimating the mean of a univariate Gaussian
Example (from Bishop, PRML)

Assume that the variance is known.
Given data points xi , what is the "best" estimate for the mean?

The maximum likelihood estimate is  µML =
1
N

xi
i
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But what if the number of points is small?
 
Lets consider the case where we want to incorporate 
prior information.

IE, let's do Bayes. 



What should we use for p(µ)?

p µ | {xi}( )!! p(µ)p({xi} | µ)

!!!= p(µ) p({xi} | µ)
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p µ | {xi}( )!! p(µ) exp " xi " µ( )2( )
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By inspection, if p(µ)! exp " µ0 " µ( )2( )  then

the form of the posterior is the same as the prior. 

IE, given known variance, a conjugate prior for the
mean of the Gaussian is a Gaussian.

Conjugacy is convenient for several reasons, but one
motivating observation is Bayesian updating whereby 
yesterday's posterior is used for today's prior. 

Quick aside one (Bayesian update)

p(! ,x2,x1) = p x2 !( ) p x1 !( ) p !( )
= p x2 !( ) p ! x1( ) p x1( )

Consider two successive groups of observations that 
are conditionally independent given the model

 

p(! ,x2 x1) = p x2 !( ) p ! x1( )
updated prior, 
after seeing x1

!"# $#

so

Quick aside two (Conjugacy)

Informal definition: Given a likelihood function
l(! , x)=p(x|! )    (we reverse !  and x when we call it a likelihood function)
a (prior) distribution is natural distribution where the posterior,
p(! | x)" p(x |! )p(! ), has the same form as p(! ).



To find the MAP (maximum a posteriori) estimate, we maximize.

Again, maximizing is the same as minimizing the negative log. 

Back to our problem.
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conjugate prior for the likelihood
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differentiating and setting derivatives to zero gives
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and further algebra reveals that
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Alternative treatment (not done in class in 2013) that also shows 
explicitly that the posterior has the same form as the conjugate prior. 
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    (ignoring constant terms)
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We combine the product 
of the two normals by 
“completing the square” 

Unknown variance or mean and variance
Example (from Bishop, PRML)

Similar stories can be told if the mean is known and the variance is 
not, or both are unknown. We will only set up the problem to have a 
look at the conjugate priors.

Simplify things by using the inverse of the covariance matrix which is 
called the precision matrix. 

In the univariate case this is simply: != 1
" 2

Example (from Bishop, PRML)
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(u is constant)

constant

Known mean, unknown variance

Inspection reveals that multiplying this by a gamma distribution

Gam ! | a,b( ) = 1
" a( )b

a! a#1 exp(#b!)

yields a posterior of the same form. The normalization constant, " a( )  is the "gamma" 
function, which extends the concept of factorial to real numbers. " n( ) = n #1( )!,  for
postive integers n. Also " x +1( ) = x" x( ) for postive reals. 

“Inspection”
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Gamma distribution illustrated (*)

From an on-line note by Kevin Murphy
(www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall07/reading/NG.pdf) 

*

Unknown mean and variance
Example (from Bishop, PRML)

p u,!( ) = p(u | !)p(!)

= N u uo , "!( )#1( )Gam(! | a,b)
where a,b,!  are constants leads to the same form in the posterior.
This is the normal-gamma  (Gaussian-gamma) distribution.

(Derivation in notes for completeness)

Indicates 
optional 
material

p µ,! | {xi}( )!" p(µ,!) p({xi} | µ,!)
i
#

We can show that the form

p xi{ } | u,!( )"!
N
2 exp # !

2
xi
2

i
$ !+!!µ xi

i
$ !#!N!

2
µ2%

&
'

(
)
*

= !
N
2 exp # !

2
D!+!!µC !#!N!

2
µ2%

&
'

(
)
*

= !
N
2 exp #!N!

2
µ2 +!!µC # !

2
D!!%

&
'

(
)
*

= !
N
2 exp (# !N

2
) µ2 # 2µC

N
+ D
N

+
,-

.
/0

+
,-

.
/0

 

p xi{ } | u,!( )"!
N

2 exp (# !N
2

) µ2 # 2µC
N

+ D
N

$
%&

'
()

$
%&

'
()

µ2 # 2µC
N

+ D
N

$
%&

'
() = µ # C

N
$
%&

'
()

$
%&

'
()

2

# C
N

$
%&

'
()

2

+ D
N

$
%&

'
()

so, 

p xi{ } | u,!( )"!
N

2 exp #! C 2

N
+ D

$
%&

'
()

$
%&

'
()

exp (# !N
2

) µ # C
N

$
%&

'
()

$
%&

'
()

2$

%
&

'

(
)

Multiplying this by ! µ|µ0 , !*( )#1( ) gives

! µ|µ1, !*1( )#1( )exp(#!k ), with exp(#!k )
coming from the constant when completing the sqaure.

" #$$$$ %$$$$

So, multiplying by the Gauss-gamma conjugate prior, ! µ | µ0, !*( )#1( )Gam ! | a,b( )
will give a posterior of the same form as the prior. As in the note below the last factor,
completing the square leads to an extra factor that is absorbed into the new Gam(). 



Beta (and Dirichlet) distributions

Beta (binary case) 
Conjugate prior for the Bernoulli and 
binomial distributions

Dirichlet (multi-outcome case)
Conjugate priors for the multi outcome 
Bernoulli and multinomial distributions

Beta(u | a,b) = !(a + b)
!(a)!(b)

ua"1 1" u( )b"1

And for completeness ... 
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3 sided coin, close to fair

3 sided coin, likely loaded, but no idea which way



Beta(u | a,b) = !(a + b)
!(a)!(b)
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Bern(x | µ) = µ x 1! µ( ) 1!x( )

(You should be able to tell 
the rest of the story ... )

More on priors

If we leave off the prior, then we are completely ignorant.

Note that the prior might be the uniform distribution over all 
numbers

This is not a PDF! 

Such priors are called improper. 

A more interesting example is p(k)=1/k.  

Everything can work out fine if the posterior is a PDF. 


