
Cross-validation

• Standard way to evaluate models
• Exclude a subset of the data while fitting model
• Compute predictions for the held-out subset.
• Evaluate predictions against actual held-out values

– e.g., distance from truth, or class labels

• If you use k such sets, this is called k-fold cross-validation
• If you leave out 1 data point, it is called leave-one-out. 

Review from last time

Cross-validation (2)

• Cross-validation provides 
– A way to choose models
– A way to measure performance
– A way to measure generalization capacity

• Held out data must be different enough to test the level of 
generality that you want
– Consider degree of validation in a model to predict happiness

1.  How happy are you now given recent data points 
2.  How happy are you now given all data points
3.  How happy are you on day X given data for other days
4.  How happy are you based on model of other people
5.  How happy are you based on other people in other experiments
6.  How happy are you based on modeling people in other cultures 

Review from last time

Classification

• Consider that our parameters include a discrete class 
variable, c. 

• Assume no other variables, or that they have been 
marginalized out. 

• Use x for the data. Then the posterior over classes is 

• So, given x, what is the class? 

p c | x( )! p(c)p(x | c)

Classification

probability of 
class given x!

x!

Where to draw the line?!

Binary case, easy to draw
Two classes, C1 and C2. 
being in one is the same as
not being in the other.



probability of 
class given x

x

decision 
boundary

Area of intersection under curves, integrated against p(x), 
gives expected value of making a mistake

Classification
Binary case, easy to draw
Two classes, C1 and C2. 
being in one is the same as
not being in the other.

Red shows extra that 
you get wrong with 
different boundary 

Finding a decision boundary is not the 
same as modeling a conditional density.

Classification

Here there are more than two classes, but only two shown. Consider all 
animals, but you are being force to choose between “dog” and “cat”. 

Finding a decision boundary is not the same as
modeling a conditional density.

Working with the boundary might be easier (we don’t care 
about the extra bumps). 

But we loose any indication of whether the point is an outlier. 

In this course we will not cover in detail methods for finding 
the boundary (discriminative method). 

Classification



Expected chance of misclassifications

• Assume that we have classes Ck.
• Assume that we map points in a region, Rj, to class j.

• (For now, just think about two classes)
• What is the probability of being wrong? 
• Equivalently, what is 1- probability of being right? 

p mistake( ) = p x !R1,C2( ) + p x !R2,C1( )
p correct( ) = p x !R1,C1( ) + p x !R2,C2( )

Following Bishop §1.5

Expected chance of misclassifications

p mistake( ) = p x !R1,C2( ) + p x !R2,C1( )
= p x,C2( )

R1
" dx + p x,C1( )

R2
" dx

p correct( ) = p x !R1,C1( ) + p x !R1,C1( )
= p x,C1( )

R1
" dx + p x,C2( )

R2
" dx

R1 R2

x0 �x

p(x, C1)

p(x, C2)
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Bishop, figure 1.24

GREEN + RED = p R1,C2( )
BLUE = p R2,C1( )
p mistake( ) = GREEN + RED + BLUE
If we divide the regions at x0  then p mistake( ) = GREEN

For K classes, 

p correct( ) = p x,Ck( )
Rk
! dx

k=1

K

"

To make p correct( )  as big as possible, we choose Rk
where  p x,Ck( )is largest. IE, 

Rk = x p x,Ck( ) # p x,Cj( ) $j % k{ }
(Moving a set of points, dx, from Rj  to Rk
where p x,Ck( ) > p x,Cj( )  makes p(correct) bigger. )



For classification accuracy, a false positive and a false negative 
count the same. But what if they should be treated differently? 

Example: Risk of a false negative diagnosis is more than that for the 
risk of false positive diagnosis. 

Define a loss function, Lk,j which tells us the loss of classifying a 
true category k, as a category, j. 

Example:
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Decision makingBishop §1.5

rows index true class

columns index “classified as”

Now the classification boundaries for x are based on the loss, 
not just the probability. 

Your choice of the class, j, for x, should be the one with the 
lowest  expected loss.

This is found by:

j
argmin Lk , j
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Decision making

The lowest  expected loss is found by choosing class j where

j
argmin Lk , j
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Decision making

Your total expected loss is the sum of the loss over the possible 
true classes over all x. Given x, this above contributes the least to 
the expectation.   

How probable is it k?
Penalty for calling it j when it is k
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Check that we get the same answer for binary classification

Most right == least wrong.  

Lk , j = k ! j( )

So, if p C2 x( )  is smaller than p C1 x( ),  to have minimal mistakes, 
we need to choose j=1. 

(Same answer as when we focused on maximizing p(correct))



Additional example to illustrate that the formula is sensible.

Suppose that at a given x*, we have
p C1 | x *( ) = 0.3 p C2 | x *( ) = 0.2 p C3 | x *( ) = 0.5

Evaluate the assignment of x* under loss functions

LA =
0 1 1
1 0 1
1 1 0
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        LB =
0 1 1
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Decision making
p C1 | x*( ) = 0.3 p C2 | x*( ) = 0.2 p C3 | x*( ) = 0.5

For the first example (loss is misclassifcation rate) 

  LB =
0 1 1
1 0 1
1 1 0
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Note that loss is defined for misclassifying the column
item as the row item. 

Declaring that x at x* is C1 has expected loss: (0.3)*0 +(0.2)*1+ (0.5)*1=0.7
Declaring that x at x* is C2  has expected loss: (0.3)*1 +(0.2)*0+ (0.5)*1=0.8
Declaring that x at x* is C3  has expected loss: (0.3)*1 +(0.2)*1+ (0.5)*0=0.5

As expected, the minimum loss is for the likeliest class. 

p C1 | x*( ) = 0.3 p C2 | x*( ) = 0.2 p C3 | x*( ) = 0.5

For the second example

  LB =
0 1 1
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Note that loss is defined for misclassifying the column
item as the row item. 

Declaring that x at x* is C1 has expected loss: (0.3)*0 +(0.2)*10+ (0.5)*1 = 2.5
Declaring that x at x* is C2  has expected loss: (0.3)*1 +(0.2)*0+ (0.5)*1  = 0.8
Declaring that x at x* is C3  has expected loss: (0.3)*1 +(0.2)*10+ (0.5)*0 = 2.3

Now the heavy penalty for missing C2  leads to C2  being the best answer.
(Note that C2  was the worst answer with the previous loss). 

More on estimation

• If the goal is to provide the model, then we often estimate 
the MAP value for the parameters 

• This assumes that the posterior is nicely behaved 

• An alternative is
to average some
or all (MMSE) of
the posterior.

Maximum a 
posteriori 
(MAP)!

p(! | x)

!



Minimum Squared Error (MMSE) Estimate

• MMSE estimate is the expected value of the parameters 
with respect to the posterior. 

• Average of the parameter values if sampled from 
• Weighted average, where where weight is 

Maximum a 
posteriori 
(MAP)!

p(! | x)

!!MAP!MMSE

p ! x( )
p ! x( )

!MMSE = ! p ! x( )" d!

Loss functions for continuous variables

L !,!̂( )   tells us the loss of each !, given an estimate, !̂.

The expected loss is  L !,!̂( )" p ! X( )d!
A loss function drives the estimate because we want 
to minimize the expected loss. 

A common choice is  L !,!̂( ) = !# !̂( )2
   (squared loss)

The minimizer here is !̂ = !̂ p ! X( )d!"
(IE, the MMSE estimate we just looked at)


