
Announcements

• “midterm one” will be posted soon
– This “midterm” is no different in format from the assignments so far

Three random variables summary
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Three random variables summary

In cases one and two, a and b were not independent until the 
observation of c “blocked” the (connection) path from a to b. 

(From Koller and Friedman, a path that is not blocked is “active”)

In case three, if c is not observed, the path is blocked. Observing c 
made the connection (path) active.  

Three random variables summary

Put more generally, paths are blocked by 
1) A tail-tail node in the conditioning set
2) A head-tail node in the conditioning set
3) A head-head node not in the conditioning set, AND that has 
no descendants in the conditioning set.  



d-Separation (Pearl, 88)

Generalizes the examples we have been studying.

Consider non-overlapping subsets A, B, C of nodes of a graph. 

Consider all paths from nodes in A to nodes in B.

A path is blocked if either:
a) The arrows meet either tail-to-tail or head-to-tail at a node in C.
b) The arrows meet head-to-head at some node that is not in C, nor 
    are any of its descendants in C. 

If all paths are blocked, then A and B are independent given C. 

“d” stands for 
“directed”
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d-Separation (example one)

The path is not blocked by e because, although it is head-to-head, it 
has a descendant, c, in the conditioning set. 

The path is not blocked by f because it is tail-to-tail, and f is not in C. 

A ! B C !
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d-Separation (example two)

The path is blocked by e because it is head-to-head, and neither it, 
nor any of its descendants are in the conditioning set. 

The path is also blocked by f because it is tail-to-tail, and f is in F. 

A ! B F !

Grounded example of a Bayesian Network
From Koller and Friedman
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G is genotype
B is blood type



Bayesian network semantics

• Represents a factorization of p() 
– Random variables are nodes
– Factors are CPD (conditional probability distributions) for child 

given parent (just p(NODE) if no parents). 

•  
– Notice no mention of factorization
– Notice no mention of observed (shaded nodes) 

– Call such independence assertions for a graph, G,  I(G)
– Call such independence assertions for a distribution, P,  I(P)

Equivalent semantic specification (Proof is in K&F, ch. 3)

For each Xi  : Xi ! NonDescendents Xi( )! !Parents Xi( )

Check against our three random variables story
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A few notes on notation and independence

We sometimes write A ! B"( )  for  A ! B

Also, we write  A ! B,C X( )  for A ! B X( )  and A ! C X( )

Recall that A ! B C( )  means that P A B,C( ) = P A C( )

This generalizes to:

A ! B ..., C, ...( )# P A ...!,B, C, ...( ) = P A ..., C,!...( )

Going from independence to a factorization
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From Koller and Friedman

Recall one version of  DAG semantics is 

Xi ! NonDescendents Xi( )! !Parents Xi( )

For P(I ,D,G,L,S),  what does  I Graph( )  tells us?



Example going from I-map to a factorization

For P(I ,D,G,L,S),   I Graph( )  tells us 

D ! I "( ) I ! D "( ) L ! I ,D,S G( ) G ! S I ,D( ) S ! D,G,L I( )
(Note that this is not necessarily all relationships that we can extract) 
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From Koller and Friedman

Recall one version of  DAG semantics is 

Xi ! NonDescendents Xi( )! !Parents Xi( )

Difficulty Intelligence
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We can write the joint distribution as conditioning on non-descendents if 
we maintain a sensible "lexigraphical order" where parents occur before children.

P I ,D,G,L,S( ) = P I( )P D I( )P G I ,D( )P L I ,D,G( )P S I ,D,G,L( )

This means that for each factor, all variables conditioned on are either
the parents, or non-descendents. 

This means that for each factor, 
we may have rule that gets rid
of some non-descendents. 

Going from independence to a factorization

P I ,D,G,L,S( ) = P I( )P D I( )P G I ,D( )P L I ,D,G( )P S I ,D,G,L( )
D ! I "( )# P D I( ) = P D( )
L ! I ,D,S G( )# P L I ,D,G( ) = P L G( )
S ! D,G,L I( )# P S I ,D,G,L( ) = P S I( )

So,  P I ,D,G,L,S( ) = P I( )P D( )P G I ,D( )P L G( )P S I( )
Difficulty Intelligence
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Conditional independence in distributions and graphs

Let  I P( )  be the set of independence assertions of the form X ! Y Z( )
that are true for a distribution P. 

Let  I G( )  be the set of independence assertions represented by
a DAG, G.

G is an I-map for P if I(G)!  I P( )

In other words, all independance represented in G are true. 
(There could be some more in P that G does not reveal).



Summary on the equivalence of the two 
interpretations of directed graphical models

Factorization semantics
Factors are p(node | parents)
 

Abstract semantics
  

These are equivalent
Proof of one direction by the one example just completed.

Xi ! NonDescendents Xi( )! !Parents Xi( )

Interesting questions

Chain rule says yes 

Case study of three nodes says no 

TBA

• Does every probability distribution have a corresponding 
Bayesian network?

• Given the independence structure of a probability distribution, 
and a graph that captures them all (I(G)=I(P), is the 
corresponding graph unique (ignoring isomorphisms)? 

• Do our graphs faithfully capture the independence structure of 
our distributions? 


