Announcements

• “midterm one” will be posted soon
 – This “midterm” is no different in format from the assignments so far

Three random variables summary

In cases one and two, \(a \) and \(b \) were not independent until the observation of \(c \) “blocked” the (connection) path from \(a \) to \(b \).

(From Koller and Friedman, a path that is \textbf{not} blocked is “active”)

In case three, if \(c \) is not observed, the path is blocked. Observing \(c \) made the connection (path) active.

Put more generally, paths are blocked by
1) A tail-tail node in the conditioning set
2) A head-tail node in the conditioning set
3) A head-head node \textbf{not} in the conditioning set, AND that has no descendants in the conditioning set.
d-Separation (Pearl, 88)

“d” stands for “directed”

Generalizes the examples we have been studying.

Consider non-overlapping subsets A, B, C of nodes of a graph.

Consider all paths from nodes in A to nodes in B.

A path is blocked if either:

a) The arrows meet either tail-to-tail or head-to-tail at a node in C.

b) The arrows meet head-to-head at some node that is not in C, nor are any of its descendants in C.

If all paths are blocked, then A and B are independent given C.

A $\nabla B | C$

The path is not blocked by e because, although it is head-to-head, it has a descendant, c, in the conditioning set.

The path is not blocked by f because it is tail-to-tail, and f is not in C.

Grounded example of a Bayesian Network

From Koller and Friedman

$A \perp B | F$

The path is blocked by e because it is head-to-head, and neither it nor any of its descendants are in the conditioning set.

The path is also blocked by f because it is tail-to-tail, and f is in F.

G is genotype

B is blood type
Bayesian network semantics

• Represents a factorization of p()
 – Random variables are nodes
 – Factors are CPD (conditional probability distributions) for child
 given parent (just p(NODE) if no parents).

Equivalent semantic specification (Proof is in K&F, ch. 3)

• For each $X_i : X_i \perp \text{NonDescendants}(X_i \mid \text{Parents}(X_i))$
 – Notice no mention of factorization
 – Notice no mention of observed (shaded nodes)
 – Call such independence assertions for a graph, G, $I(G)$
 – Call such independence assertions for a distribution, P, $I(P)$

A few notes on notation and independence

We sometimes write $\left(A \perp B \mid \emptyset \right)$ for $A \perp B$

Also, we write $\left(A \perp B, C \mid X \right)$ for $\left(A \perp B \mid X \right)$ and $\left(A \perp C \mid X \right)$

Recall that $\left(A \perp B \mid C \right)$ means that $P(A|B, C) = P(A|C)$

This generalizes to:

$\left(A \perp B, C, \ldots \right) \Rightarrow P(A|\ldots, B, C, \ldots) = P(A|\ldots, C, \ldots)$

Going from independence to a factorization

From Koller and Friedman

For $P(I,D,G,L,S)$, what does $I(Graph)$ tells us?

Recall one version of DAG semantics is

$X_i \perp \text{NonDescendants}(X_i) \mid \text{Parents}(X_i)$
Example going from I-map to a factorization
From Koller and Friedman

For $P(I,D,G,L,S)$, $I(Graph)$ tells us

$(D \perp I|\emptyset) \quad (I \perp D|\emptyset) \quad (L \perp I,D,S|G) \quad (G \perp S|I,D) \quad (S \perp D,G,L|I)$

(Notahe this is not necessarily all relationships that we can extract)

Recall one version of DAG semantics is

$X_j \perp \text{NonDescendants}(X_j) \mid \text{Parents}(X_j)$

We can write the joint distribution as conditioning on non-descendants if we maintain a sensible "lexigraphical order" where parents occur before children.

$P(I,D,G,L,S) = P(I)P(D|I)P(G|I,D)P(L|I,D,G)P(S|I,D,G,L)$

This means that for each factor, all variables conditioned on are either the parents, or non-descendants.

This means that for each factor, we may have rule that gets rid of some non-descendants.

Conditional independence in distributions and graphs

Let $I(P)$ be the set of independence assertions of the form $(X \perp Y|Z)$ that are true for a distribution P.

Let $I(G)$ be the set of independence assertions represented by a DAG, G.

G is an I-map for P if $I(G) \subseteq I(P)$

In other words, all independance represented in G are true.
(There could be some more in P that G does not reveal).
Summary on the equivalence of the two interpretations of directed graphical models

Factorization semantics
Factors are $p(\text{node} \mid \text{parents})$

Abstract semantics
$X_i \perp \text{NonDescendents}(X_i) \mid \text{Parents}(X_i)$

These are equivalent
Proof of one direction by the one example just completed.

Interesting questions

• Does every probability distribution have a corresponding Bayesian network?

 Chain rule says yes

• Given the independence structure of a probability distribution, and a graph that captures them all ($I(G)=I(P)$), is the corresponding graph unique (ignoring isomorphisms)?

 Case study of three nodes says no

• Do our graphs faithfully capture the independence structure of our distributions?

 TBA